掷骰子100次,求点数之和的数学期望和方差
每一个骰子点数X的期望是(1+2+3+4+5+6)/6=3.5;E(X方)=(1+4+9+16+25+36)/6=15.167;DX=15.167-3.5方=2.916666667。
点数之和Y的期望EY=n*3.5;方差DY=n*DX=2.9166666667n
扩展资料
在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义称为概率的统计定义。
在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。
从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。
方法如下:
(1+2+3+4+5+6)/6=3.5;E(X方)=(1+4+9+16+25+36)/6=15.167;DX=15.167-3.5方=2.916666667。点数之和Y的期望EY=n*3.5;方差DY=n*DX=2.9166666667n
扩展资料:
例如,在一次同时掷一个硬币和一个骰子的随机试验中,假设事件A为获得国徽面且点数大于4,那么事件A的概率应该有如下计算方法:S={(国徽,1点),(数字,1点),(国徽,2点),(数字,2点),(国徽,3点),(数字,3点),(国徽,4点),(数字,4点),(国徽,5点),(数字,5点),(国徽,6点),(数字,6点)},A={(国徽,5点),(国徽,6点)},按照拉普拉斯定义。
A的概率为2/12=1/6,注意到在拉普拉斯试验中存在着若干的疑问,在现实中是否存在着这样一个试验,其单位事件的概率具有精确的相同的概率值,因为人们不知道,硬币以及骰子是否"完美",即骰子制造的是否均匀,其重心是否位于正中心,以及轮盘是否倾向于某一个数字等等。