1个回答
展开全部
3+2cosα-2sinα
=3-2(sinα-cosα)
=3-2√2sin(α-π/4)
-1<=sin(α-π/4)<=1
所以-2√2<=-2√2sin(α-π/4)<=2√2
3-2√2<=3-2√2sin(α-π/4)<=3+2√2
所以(√2-1)^2<=3-2√2sin(α-π/4)<=(√2+1)^2
所以√2-1<=√(3+2cosα-2sinα)<=√2+1
最大=√2+1,最小=√2-1
=3-2(sinα-cosα)
=3-2√2sin(α-π/4)
-1<=sin(α-π/4)<=1
所以-2√2<=-2√2sin(α-π/4)<=2√2
3-2√2<=3-2√2sin(α-π/4)<=3+2√2
所以(√2-1)^2<=3-2√2sin(α-π/4)<=(√2+1)^2
所以√2-1<=√(3+2cosα-2sinα)<=√2+1
最大=√2+1,最小=√2-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询