(1-1/2^2)(1-1/3^2)...(1-1/2005^2)
3个回答
展开全部
(1-1/2^2)*(1-1/3^2)*(1-1/4^2)......(1-1/2005^2)^2
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4)...(1-1/2005)(1+1/2005)
=1/2*3/2*2/3*4/3*3/4*5/4*...*2004/2005*2006/2005
=1/2*2006/2005
=1003/2005
或
通式为(1-1/2^2)(1-1/3^2)(1-1/4^2)……(1-1/(n-1)^2)(1-1/n^2)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)……(1+1/(n-1))(1-1/(n-1))(1+1/n)(1-1/n)
={(n+1)/2}(1/n)=(n+1)/2n
n=2005
所以结果=1003/2005
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4)...(1-1/2005)(1+1/2005)
=1/2*3/2*2/3*4/3*3/4*5/4*...*2004/2005*2006/2005
=1/2*2006/2005
=1003/2005
或
通式为(1-1/2^2)(1-1/3^2)(1-1/4^2)……(1-1/(n-1)^2)(1-1/n^2)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)……(1+1/(n-1))(1-1/(n-1))(1+1/n)(1-1/n)
={(n+1)/2}(1/n)=(n+1)/2n
n=2005
所以结果=1003/2005
展开全部
(1-1/2^2)(1-1/3^2)...(1-1/2005^2)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/2005)(1+1/2005)
=(1/2)(3/2)(2/3)(4/3)...(2004/2005)(2006/2005)
=1/2*2006/2005
=1003/2005
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/2005)(1+1/2005)
=(1/2)(3/2)(2/3)(4/3)...(2004/2005)(2006/2005)
=1/2*2006/2005
=1003/2005
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1-1/2^2)(1-1/3^2)...(1-1/2005^2)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/2005)(1+1/2005)
=(1/2)(3/2)(2/3)(4/3)...(2004/2005)(2006/2005)
=1/2*2006/2005
=1003/2005
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/2005)(1+1/2005)
=(1/2)(3/2)(2/3)(4/3)...(2004/2005)(2006/2005)
=1/2*2006/2005
=1003/2005
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询