在三角形ABC中,三内角A,B,C的对边是a,b,c,b^2=ac,且cosB=3/4
1个回答
展开全部
解:
由正弦定理a/sinA=b/sinB=c/sinC=2R
得:a=2RsinA,b=2RsinB,c=2RsinC
代入b^2=ac
得:(sinB)^2=sinA*sinC
∵0°<∠B<180°
∴sinB=√[1-(cosB)^2]=√7/4
∴cotA+cotC
=cosA/sinA+cosC/sinC
=(sinC*cosA+cosC*sinA)/(sinA*sinC)
=sin(A+C)/(sinB)^2
=sinB/(sinB)^2
=1/sinB
=4/√7
=4√7/7
由正弦定理a/sinA=b/sinB=c/sinC=2R
得:a=2RsinA,b=2RsinB,c=2RsinC
代入b^2=ac
得:(sinB)^2=sinA*sinC
∵0°<∠B<180°
∴sinB=√[1-(cosB)^2]=√7/4
∴cotA+cotC
=cosA/sinA+cosC/sinC
=(sinC*cosA+cosC*sinA)/(sinA*sinC)
=sin(A+C)/(sinB)^2
=sinB/(sinB)^2
=1/sinB
=4/√7
=4√7/7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询