几何分布的方差如何证明 5

急需... 急需 展开
百度网友0365f71005
2009-05-24 · TA获得超过2.5万个赞
知道大有可为答主
回答量:4595
采纳率:0%
帮助的人:4725万
展开全部
Eξ=1/p,Dξ=(1-p)/p^2
Dξ=E(ξ^2)-(Eξ)^2
E(ξ^2)=p+2^2*qp+3^2*q^2*p+……+k^2*q^(k-1)*p+……
=p(1+2^2*q+3^2*q^2+……+k^2*q^(k-1)+……)
对于上式括号中的式子,利用导数,关于q求导:k^2*q^(k-1)=(k*q^k)',并用倍差法求和,有
1+2^2*q+3^2*q^2+……+k^2*q^(k-1)+……
=(q+2*q^2+3*q^3+……+k*q^k+……)'
=[q/(1-q)^2]'
=[(1-q^2)+2(1-q)q]/(1-q)^4
=(1-q^2)/(1-q)^4
=(1+q)/(1-q)^3
=(2-p)/p^3
因此E(ξ^2)=p[(2-p)/p^3]=(2-p)/p^2
则Dξ=E(ξ^2)-(Eξ)^2=(2-p)/p^2-(1/p)^2=(1-p)/p^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式