高斯滤波和均值滤波的区别 opencv
1个回答
展开全部
滤波实质上就是对图像进行卷积运算。而卷积的运算可以分为反转、平移,相乘,求和。
在图像处理中,图像是一个大矩阵,卷积模板是一个小矩阵。按照上述过程,就是先把小矩阵反转,然后平移到某一位置,小矩阵的每一个小格对应大矩阵里面的一个小格,然后把对应小格里面的数相乘,把所有对应小格相乘的结果相加求和,得出的最后结果赋值给小矩阵中央小格对应的图像中小格的值,替换原来的值。就是上述说到的,反转、平移、相乘、求和。
一般图像卷积就是从第一个像素(小格)开始遍历到最后一个像素(小格)。之后的平滑、模糊、锐化、边缘提取等本质上都是卷积,只是模板不同。
了解以上之后,就很好理解了。均值滤波就是对模板对应的图像像素求均值然后赋值给模板中心对应的那个像素值。高斯滤波模板是二维高斯函数的离散化表示,高斯函数就是我们熟悉的正态分布。所以可以知道模板是中心值大,而越往外越小,高斯模板就是按照高斯函数递减的模板。
如果把模板小矩阵的每一个元素视为一个权值的话,均值滤波就是所有元素权值相等,高斯滤波就是中心点权值最大,越往外所占越小。比平均滤波的好处是可以突出重点。
可以参考浅墨大神的这篇博文,里面有更细致的介绍:http://blog.csdn.net/pi9nc/article/details/22977297
在图像处理中,图像是一个大矩阵,卷积模板是一个小矩阵。按照上述过程,就是先把小矩阵反转,然后平移到某一位置,小矩阵的每一个小格对应大矩阵里面的一个小格,然后把对应小格里面的数相乘,把所有对应小格相乘的结果相加求和,得出的最后结果赋值给小矩阵中央小格对应的图像中小格的值,替换原来的值。就是上述说到的,反转、平移、相乘、求和。
一般图像卷积就是从第一个像素(小格)开始遍历到最后一个像素(小格)。之后的平滑、模糊、锐化、边缘提取等本质上都是卷积,只是模板不同。
了解以上之后,就很好理解了。均值滤波就是对模板对应的图像像素求均值然后赋值给模板中心对应的那个像素值。高斯滤波模板是二维高斯函数的离散化表示,高斯函数就是我们熟悉的正态分布。所以可以知道模板是中心值大,而越往外越小,高斯模板就是按照高斯函数递减的模板。
如果把模板小矩阵的每一个元素视为一个权值的话,均值滤波就是所有元素权值相等,高斯滤波就是中心点权值最大,越往外所占越小。比平均滤波的好处是可以突出重点。
可以参考浅墨大神的这篇博文,里面有更细致的介绍:http://blog.csdn.net/pi9nc/article/details/22977297
晓网科技
2024-10-17 广告
2024-10-17 广告
ZigBee作为一项新型的无线通信技术,其具有传统网络通信技术所不可比拟的优势,既能够实现近距离操作,又可降低能源的消耗。又如,相较于蓝牙等无线通信技术,ZigBee无线通信技术可有效降低使用成本, 即便数据处理的速率并不高,然而,值得肯定...
点击进入详情页
本回答由晓网科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询