求解对arctanx求幂级数时的定义区间(也就是收敛区间)怎么求的? 因为求出的幂级数缺少偶次幂
求解对arctanx求幂级数时的定义区间(也就是收敛区间)怎么求的?因为求出的幂级数缺少偶次幂那么就好像不能直接用a(n+1)/a(n)了,求解?...
求解对arctanx求幂级数时的定义区间(也就是收敛区间)怎么求的?
因为求出的幂级数缺少偶次幂那么就好像不能直接用a(n+1)/a(n)了,求解? 展开
因为求出的幂级数缺少偶次幂那么就好像不能直接用a(n+1)/a(n)了,求解? 展开
2个回答
展开全部
级数微分或积分它的收敛半径不变,微分一次,变成了(-1)^n*x^(2n)=(-1)^n*(x^2)^(n),将x的2n次幂变成x^2的n次幂就不缺项。可以用a(n+1)/a(n),等比数列收敛的公比。最后,再用牛顿-莱布尼兹判别法验证端点即可。
微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
展开全部
其实,缺少偶次幂也是可以用你说的那个方法的,只是要求收敛半径,需将直接求得的结果开根号。但按你说的来,级数微分或积分它的收敛半径不变对吧(但收敛域可能会变)?微分一次,变成了(-1)^n*x^(2n)=(-1)^n*(x^2)^(n),将x的2n次幂变成x^2的n次幂就不缺项了。你就可以用a(n+1)/a(n),如果还是难以理解,那就想想等比数列收敛的公比呗。最后,再用牛顿-莱布尼兹判别法验证端点即可。
追问
谢啦 还有就是问一下缺少偶或奇次幂可以按原方法求完直接开根号吗?
追答
当然可以,但有时候会忘开根号(我就忘记过)。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询