拓补学的概述
1个回答
展开全部
数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支.在拓扑学的孕育阶段,19世纪末,就已出现点集拓扑学与组合拓扑学两个方向。现在前者已演化成一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓扑学、几何拓扑学等分支。拓扑学主要是由于分析学和几何学的需要而发展起来的,它自30年代以来的大发展,尤其是它的成果与方法对于数学的各个领域的不断渗透,是20世纪理论数学发展中的一个明显特征。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询