怎样判断函数是否可微

 我来答
你爱我妈呀
2019-08-03 · TA获得超过8.6万个赞
知道小有建树答主
回答量:686
采纳率:100%
帮助的人:27.5万
展开全部

1、函数可微的必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、函数可微的充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

扩展资料:

1、可微的几何意义就是曲面被平面所截所得点处切线的斜率。

2、若ƒ在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。

3、实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。

参考资料来源:百度百科-可微

参考资料来源:百度百科-可微函数

百度网友19d0e82
高粉答主

2019-09-30 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:549
采纳率:98%
帮助的人:16.9万
展开全部

一、函数可微的判断

1、函数可微的必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、函数可微的充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

二、多元函数可微的条件

多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。

扩展资料:

微分的推导

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

得出: 当△x→0时,△y≈dy。 

导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。

参考资料来源:百度百科-可微性

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yzwb我爱我家

2016-11-19 · 知道合伙人教育行家
yzwb我爱我家
知道合伙人教育行家
采纳数:64745 获赞数:753558
从1998年任教小学数学至今,并担任班主任工作10余年。

向TA提问 私信TA
展开全部

  根据函数可微的必要条件和充分条件进行判定:

  1、必要条件

  若函数在某点可微分,则函数在该点必连续;

  若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

  2、充分条件

  若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。


  相关知识:函数在某点的可微性

  设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ligongdaxueren
2014-03-19 · TA获得超过1548个赞
知道小有建树答主
回答量:522
采纳率:44%
帮助的人:238万
展开全部
对于一元函数而言,可微必可导,可导必可微,这是充要条件;对于多远函数而言,可微必偏导数存在,但偏导数存在不能推出可微,而是偏导数连续才能推出可微来,这就不是充要条件了,要证明一个函数可微,必须利用定义,即全增量减去(对x的偏导数乘以x的增量)减去(对y的偏导数乘以Y的增量)之差是距离的高阶无穷小,才能说明可微,如果换不清楚,请追问,我会给你解答,希望对你有所帮助!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式