如何利用Python做简单的验证码识别

 我来答
从空去听8
2017-11-24 · TA获得超过7439个赞
知道大有可为答主
回答量:6907
采纳率:93%
帮助的人:5573万
展开全部

最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三四百张左右。好吧,其实是验证码太简单。下面就是要识别的验证码。

 

我主要用的是Python中的PIL库。

首先进行二值化处理。由于图片中的噪点颜色比较浅,所以可以设定一个阈值直接过滤掉。这里我设置的阈值是150,像素大于150的赋值为1,小于的赋为0.

def set_table(a):
table = []
for i in range(256):        if i < a:
table.append(0)        else:
table.append(1)    return table

img = Image.open("D:/python/单个字体/A"+str(i)+".jpg")
pix = img.load()#将图片进行灰度化处理img1 = img.convert('L')#阈值为150,参数为1,将图片进行二值化处理img2 = img1.point(set_table(150),'1')  1234567891011121314151617

处理后的图片如下。

阈值不同产生的不同效果:


 

接下来对图片进行分割。遍历图片中所有像素点,计算每一列像素为0的点的个数(jd)。对于相邻两列,若其中一列jd=0,而另一列jd!=0,则可以认为这一列是验证码中字符边界,由此对验证码进行分割。这样分割能达到比较好的效果,分割后得到的字符图片几乎能与模板完全相同。

(Width,Height) = img2.size
pix2 = img2.load()
x0 = []
y0 = []for x in range(1,Width):
jd = 0
# print x
for y in range(1,Height):        # print y
if pix2[x,y] == 0:
jd+=1
y0.append(jd)    if jd > 0:
x0.append(x)#分别对各个字符边界进行判断,这里只举出一个        for a in range(1,Width):    if (y0[a] != 0)&(y0[a+1] != 0):
sta1 = a+1
break123456789101112131415161718192021

分割完成后,对于识别,目前有几种方法。可以遍历图片的每一个像素点,获取像素值,得到一个字符串,将该字符串与模板的字符串进行比较,计算汉明距离或者编辑距离(即两个字符串的差异度),可用Python-Levenshtein库来实现。

我采用的是比较特征向量来进行识别的。首先设定了4个竖直特征向量,分别计算第0、2、4、6列每一列像素值为0的点的个数,与模板进行比较,若小于阈值则认为该字符与模板相同。为了提高识别率,如果通过竖直特征向量未能识别成功,引入水平特征向量继续识别,原理与竖直特征向量相同。

另外,还可以通过局部特征进行识别。这对于加入了旋转干扰的验证码有很好效果。由于我写的脚本识别率已经达到了要求,所以并没有用到这个。

最后的结果是这样的:

最终在模板库只有25条的情况下,识别率在92%左右(总共测试了一万六千张验证码)。好吧,只能说验证码太简单。。

以上。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式