数学中的根是什么意思

 我来答
白雪忘冬
高粉答主

2019-06-25 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376620

向TA提问 私信TA
展开全部

所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。

所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。

平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。

0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。

扩展资料

分类:

1、重根

在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2。

虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。

2、无根

一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。

3、增根

解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。

4、不存在根

而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。

参考资料来源:百度百科-根 (数学代数学中的术语)

帐号已注销
2019-04-22 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:174万
展开全部

根 (数学代数学中的术语)。所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。

所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。

扩展资料:

重根:在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2,虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。

一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。

增根。解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。如果不遵从同解原理,即使解整式方程也可能出现增根.例如将方程x-2=0的两边都乘x,变形成x(x-2)=0,方程两边所乘的最简公分母,看其是否为0,是0即为增根。

增根的产生,归根结底都是因为思维的不全面产生的。解题时要保证步步变形的等价性,这种等价性要通过等式和不等式去约束出来,特别是不等式,容易被忽略。如果不得已必须用不等价变形来解题,那么最后千万别忘记通过检验来去掉增根,这种检验也要注意全面性。

参考资料来源:百度百科-根

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小小芝麻大大梦
高粉答主

2019-04-10 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:983万
展开全部

所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。

所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。

扩展资料:

在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0,此方程的根:x=12,x2=-2。

虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。

解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。

参考资料来源:百度百科-根

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
B独望烟火千年
2020-07-15
知道答主
回答量:2
采纳率:0%
帮助的人:1051
展开全部
有奖励
数学中的根是什么意思
聊聊关注成为第1932位粉丝
所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。
0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
扩展资料
分类:
1、重根
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2。
虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。
2、无根
一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
3、增根
解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
4、不存在根
而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。
参考资料来源:百度百科-根 (数学代数学中的术语)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秋至露水寒
高粉答主

2017-08-20 · 专注解答数学类型问题
秋至露水寒
采纳数:37359 获赞数:129877

向TA提问 私信TA
展开全部
方程的根就是方程的解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式