怎样在小学数学应用题教学中培养学生的逻辑思维能力

 我来答
wxmao88
2017-06-29 · 知道合伙人教育行家
wxmao88
知道合伙人教育行家
采纳数:29716 获赞数:532728
截止目前,采纳数达到2.9万,采纳率达97%,已升至19级。

向TA提问 私信TA
展开全部
《九年义务教育全日制教学大纲》明确指出:“要培养学生对所学内容进行初步的分析、综合、比较、抽象、概括,对简单问题进行判断、推理,逐步学会有条理、有根据地思考问题,同时注意思维的敏捷和灵活。”初步培养学生逻辑思维能力不仅是教学大纲的要求,而且是小学数学教学中的一项重要任务。我在低年级应用题教学中,在指导学生学习知识的同时,有的放矢地培养他们的逻辑思维能力,具体抓了以下几方面。
一、抓一个“补”字,初步培养学生的分析、综合能力

“补”就是给不完整的题目补条件、补问题,使其成为一步或两步计算的应用题。补条件、补问题的练习能使学生进一步掌握应用题的结构和数量关系,初步培养学生从条件出发来考虑问题和从问题出发来考虑条件的综合、分析的思维能力。如:小明家养了18只小鸡,9只大鸡,?要求学生根据条件分析数量关系,补充问题。有的学生说:“小鸡18只是部分数,大鸡9只是另一部分数,可补求总数的问题。”这时教师再问:“还可补充什么问题呢?”有的学生说:“小鸡的只数和大鸡的只数相比,小鸡的只数是大数,大鸡的只数是小数,可补出相差的问题。”还有的说:“小鸡的只数和大鸡的只数相比,大鸡的只数是一倍数,小鸡的只数是几倍数,可补求倍数的问题。”这种由条件补充问题的过程正是综合的过程。又如:,黑兔有3只,白兔和黑兔一共有几只?这题缺少什么条件?要求白兔和黑兔一共有几只?必须知道哪两个条件?(白兔的只数和黑兔的只数),黑兔的只数已知道了,必须补上白兔的只数。这种由问题想条件的过程是分析过程。教师经常有意识地训练学生由条件补出问题,由问题补出条件,不仅使学生对应用题的结构有了明确的认识,而且也培养了学生综合、分析的思维能力。

二、抓一个“比”字,初步培养学生的观察、比较能力

“比”就是比较。教育家乌申斯基说过:“比较是一切理解与思维的基础,我们正是通过比较来了解世界上的一切的。”通过比较,我们可以把相似、相近的应用题知识区别开来,找出它们的差异,从而加深学生对所学知识的理解。教学时,我充分利用教材引导学生观察、比较,找出两道题的相同点与不同点。如第二册88页例7:①有红花9朵,黄花6朵,黄花比红花少几朵?②有红花9朵,黄花比红花少3朵,黄花有几朵?先引导学生通过题面观察、比较答出:两题中有一个条件是相同的,即红花9朵,另一个条件和问题不同。再让学生结合直观图,观察两题有何相同与异同的地方:①题里的第二个条件就是②题里的问题;①题里的问题在②题里变成了条件。因此,解题时应根据条件和问题确立解答方法。最后再从结构比较两题:从条件看,都是已知红花多、黄花少,多的红花可分成两部分:一部分是和黄花同样多的部分,另一部分是红花比黄花多的部分。由此可得:题①是求黄花比红花少几朵,要从红花里去掉与黄花同样多的部分,剩下的就是红花比黄花多的部分,也就是黄花比红花少的部分,即“9-6=3(朵)”。题②是求有多少朵黄花,要从红花的部分去掉红花比黄花多的部分,就是红花与黄花同样多的部分,也是黄花的朵数,即“9-3=6(朵)”。这样的观察、比较,使学生对两类应用题的结构和数量关系更加明确,培养了学生的观察、比较能力。

三、抓一个“画”字,初步培养学生抽象、概括能力
“画”就是用直观图形把应用题的条件和问题形象的表示出来。使学生获得充分的感性材料和丰富的表象,教师给予抽象、概括,学生认识由感性认识上升到理性认识阶段,从而抽象、概括能力得到培养。如一年级应用题教学时,题“左边有8朵红花,右边有3朵黄花,一共有几朵花?”首先在黑板左边用红粉笔画出8朵红花,让学生观察,在黑板右边用黄粉笔画上3朵黄花,引导学生看黑板说意思:“左边8朵红花,右边3朵黄花”,这样使学生首先得到了感性材料。再引导学生提出问题:“一共有几朵花?”就很自然的把“画”出的问题转化为数学问题,即应用题。学生比较容易地掌握了应用题的结构,这样根据题意和已建立起来的表象,联系加法的含义,分析数量关系,学生很容易说出“要求一共有几朵花”就是8和3合并起来,用加法计算,培养了学生的抽象、概括的能力。

四、抓一个“问”字,初步培养学生的判断、推理能力

“问”就是教师提出问题,让学生回答。

1、抓住关键句子,进行判断推理训练:①苹果比梨多5个,谁多?(苹果多)苹果可分为哪两部分?(一部分和梨同样多,另一部分是比梨多的部分)②冬瓜比南瓜少3个,谁多?(南瓜多)南瓜可分为哪两部分?(一部分和冬瓜同样多,另一部分是比冬瓜多的部分)上述两例,第一问是引导学生依据“比多”、“比少”应用题知识直接作出判断。第二问是依据作出的判断,推论出多的数中可以分为哪两部分,这种练习方式,既强化了低年级应用题的重点与难点,又发展了学生的判断、推理能力。

2、提出连续性问题,进行判断、推理训练如,二年级有28人,要开展课外活动,平均分成4个组,每组有多少人?①这题说了件什么事?告诉条件是什么?问题是什么?②求每组的人数,实际应当求什么?(把总人数平均分成几份,每份是多少);③把总数平均分成几份?用什么方法求?除法);④怎样列式呢?(28÷4)。这4个小问题的设计旨在揭示算式“28÷4”的由来,学生回答的过程是一个判断、推理过程,在这一过程中不但解决了问题(列出算式28÷4),而且受到判断、推理训练。在教学过程中,教师要精心设计问题,引导学生思路,展现推理过程。让学生在经常地训练中掌握判断、推理方法,逐步地能够独立地思考问题、解决问题。

五、抓一个“说”字,初步培养学生思维的条理性、系统性

“说”就是说题意、说思路、说策略。在低年级应用题教学中,不但要求学生要会正确列式计算,更重要的是要引导学生将题意、思路、策略充分“说”出,培养其思维的条理性、系统性。如:果园里有苹果树250棵,梨树比苹果树少50棵,梨树和苹果树一共有多少棵?

1、先引导学生说清题意:题中告诉的一个条件是苹果树250棵,另一个条件是梨树比苹果树少50棵,问题是求梨树与苹果树一共有多少棵?

2、引导学生说思路:要求苹果树和梨树一共有多少棵,必须知道梨树的棵数和苹果树的棵树,苹果树的棵数是已知的,应先求出梨树的棵树。这样的思路明确了,解题策略就出现了。

3、说列式:梨树棵数为:250-50=200(棵),苹果树与梨树一共有的棵数:250+200=450(棵)。“语言是思维的外壳”。说明思维决定着语言的表达,反过来语言又促进思维的发展,使思维更加条理。在低年级应用题教学中,引导学生说题意、说思路、说策略,有利于学生理解应用题结构,有利于培养学生思维的系统性和条理性。

六、抓一个“变”字,初步培养学生思维的灵活性、敏捷性

“变”就是变换条件、变换问题。它可训练学生从多角度、多方位思考问题,说明问题实质,使学生思维更灵活、敏捷。如“有红气球6个,有黄气球24个,共有多少个气球?可变为:①有红气球6个,黄气球比红气球多18个,共有多少个气球?②有黄气球24个,红气球比黄气球少18个,共有多少个气球:③有红气球6个,比黄气球少18个,共有多少个气球:④有黄气球24个,比红气球多18个,共有多少个气球?⑤有红气球6个,黄气球的个数是红气球的4倍,共有多少个气球?⑥有黄气球24个,黄气球的个数是红气球的4倍,共有多少个气球?尽管条件叙述形式变了,但其黄气球、红气球的数量关系是一样的。这种变换形式的训练,使学生的思维不是固定在某一个问题的结构和解法上,从而培养学生认真理解题意、分析数量关系的良好习惯,发展学生的多向思维能力和应变能力,提高思维的灵活性和敏捷性。总之,在低年级应用题教学中,教师要有意识地采取多种形式,逐步培养学生的逻辑思维能力,才能取得更好的教学效果。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式