分数的导数怎么求,分数怎么求导
函数商的求导法则:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2。
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
扩展资料:
导数与函数的性质
一、单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
二、凹凸性
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
参考资料:百度百科——导数
公式:(U/V)'=(U'V-UV')/(V^2)
解题过程:
一、分式求导:
结果的分子=原式的分子求导乘以原式的分母-原式的分母求导乘以原式的分子
结果的分母=原式的分母的平方。
即:对于U/V,有(U/V)'=(U'V-UV')/(V^2)
二、导数的求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
扩展资料:
分数求导常用到的导数公式:
1.C'=0(C为常数);
2.(Xn)'=nX(n-1) (n∈R);
3.(sinX)'=cosX;
4.(cosX)'=-sinX;
5.(aX)'=aXIna (ln为自然对数);
6.(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);
7.(tanX)'=1/(cosX)2=(secX)2
8.(cotX)'=-1/(sinX)2=-(cscX)2
9.(secX)'=tanX secX;
10.(cscX)'=-cotX cscX
参考资料:百度百科-导数
式求导:
结=原式求导乘原式母-原式母求导乘原式
结母=原式母平
即:于U/V(U/V)'=(U'V-UV')/(V^2)
感觉提问主意不是很清晰
这里的只能参考了