an=2^(n-1),Sn=a1(q^n-1)/(q-1)=1(2^n-1)/(2-1)=2^n-1
bn=nSn=n(2^n-1)=n2^n-n
Tn=(1x2-1)+(2x2^2-2)+(3x2^3-3)+(4x2^4-4)+……+(n2^n-n)
=(1x2+2x2^2+3x2^3+4x2^4+……+n2^n)-(1+2+3+4+……+n)
S=1x2+2x2^2+3x2^3+4x2^4+ …… +n2^n
2S= 1x2^2+2x2^3+3x2^4+……+(n-1)2^n+n2^(n+1)
上面两式相减:(错位相减法)
-S=2+2^2+2^3+2^4+ …… +2^n-n2^(n+1)
=2(2^n-1)(2-1)-n2^(n+1)
= 2^(n+1)-2-n2^(n+1)
=-(n-1)x2^(n+1)-2
所以,S=(n-1)x2^(n+1)+2
代入上面
Tn=(1x2-1)+(2x2^2-2)+(3x2^3-3)+(4x2^4-4)+……+(n2^n-n)
=(1x2+2x2^2+3x2^3+4x2^4+……+n2^n)-(1+2+3+4+……+n)
=(n-1)x2^(n+1)+2-(1+n)xn/2
=(n-1)x2^(n+1)-(n^2+n-4)/2