2个回答
展开全部
换元法,三角换元变形,定积分偶倍奇零,
(5)换元u=x+1,
=∫(1到3)(u+1)/(u²+2)du
=(1/2)ln(u²+2)+(1/√2)arctan(u/√2)
(6)=2√(x-1)=2√2
(7)换元x=asinu,
=∫(0到π/2)asinu/acosudasinu
=-acosu
=a
(8)=∫(π/4到π/3)1/tan²usecudtanu
=∫cosu/sin²udu
=-1/sinu
=√2-2/√3
(5)换元u=x+1,
=∫(1到3)(u+1)/(u²+2)du
=(1/2)ln(u²+2)+(1/√2)arctan(u/√2)
(6)=2√(x-1)=2√2
(7)换元x=asinu,
=∫(0到π/2)asinu/acosudasinu
=-acosu
=a
(8)=∫(π/4到π/3)1/tan²usecudtanu
=∫cosu/sin²udu
=-1/sinu
=√2-2/√3
追问
七八题,没看懂!!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询