求定积分计算
2个回答
展开全部
∫(π/4->π/3) x/(sinx)^2 dx
=-∫(π/4->π/3) xdcotx
=-[xcotx]|(π/4->π/3) +∫(π/4->π/3) cotx dx
=-[ (π/3)(√3/3) -π/4 ] + [ln|sinx|]|(π/4->π/3)
=π ( 1/4 - √3/9) + ( ln( √3/2) - ln(√2/2))
=(π/36) (9 - 4√3) + (1/2)(ln3 - ln2)
=-∫(π/4->π/3) xdcotx
=-[xcotx]|(π/4->π/3) +∫(π/4->π/3) cotx dx
=-[ (π/3)(√3/3) -π/4 ] + [ln|sinx|]|(π/4->π/3)
=π ( 1/4 - √3/9) + ( ln( √3/2) - ln(√2/2))
=(π/36) (9 - 4√3) + (1/2)(ln3 - ln2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询