
高分跪求英文翻译
Severalresearchershavereportedtheenrichmentandisolationfromcompromisedsitesindifferen...
Several researchers have reported the enrichment and isolation from compromised sites in different Geographical regions (Radosevich et al. 1995; Bouquardet al. 1997; Sparling et al. 1998; Topp et al. 2000b)of microorganisms which are able to: dealkylate atrazine in a carbon-limited medium (Behki & Kahn1986); mineralize and use atrazine as a sole carbon and energy source (Mandelbaum et al. 1995; Yanze-Kontchou & Gschwind 1995; Topp et al. 2000b);utilize the heterocyclic nitrogen (Bichat et al. 1999);and, in the presence of supplemental carbon, mineralize atrazine and its metabolites as a source of nitrogen (Mandelbaum et al. 1993; Topp et al. 2000a). Successfulmineralization of >94% of atrazine-C (50μgml−1)and the isolation of a microorganism, Agrobacterium radiobacter strain J14a, which was able to dealkylate,dehalogenate and mineralize the s-triazine ring when the molecule was used as a nitrogen source, was reported by Struthers et al. (1998). By screening some Rhodococcus strains which were known to be ubiquitous in soil and had diverse biodegradative capabilities,Behki et al. (1993) identified the strain TE1 with a77-kb plasmid with atrazine-degrading capacity. Other workers reportedmicrobial associations (Mandelbaumet al. 1993; Assaf & Turco 1994a, b; Alvey & Crowley1996; de Souza et al. 1998a; Ralebitso et al. 1999) and fungal species (Donnelly et al. 1993; Mougin et al.1994) which mineralized atrazine.
Culturable soil atrazine-catabolizing microbial associations/monocultures showa preponderance of rodshaped bacteria (Table 1). Of these, Pseudomonassp. strain ADP, which is capable of catabolizing theherbicide at concentrations >1 000 mg l−1, has become a reference strain and has been used extensively to: study atrazine catabolism under anoxic or denitrifying conditions (Shapir et al. 1998; Katz etal. 2000); demonstrate efficient bioaugmentation of an atrazine-contaminated soil (Newcombe & Crowley1999); examine a method for aquifer amelioration insitu (Shati et al. 1996); explore atrazine degradation
in soil, in comparison to other monocultures (Topp2001); elucidate sequences of the aerobic catabolic enzymes atzA (de Souza et al. 1996), atzB (Boundy-Mills et al. 1997) and atzC (Sadowsky et al. 1998) and develop probes for their encoding genes (de Souza etal. 1998b). 展开
Culturable soil atrazine-catabolizing microbial associations/monocultures showa preponderance of rodshaped bacteria (Table 1). Of these, Pseudomonassp. strain ADP, which is capable of catabolizing theherbicide at concentrations >1 000 mg l−1, has become a reference strain and has been used extensively to: study atrazine catabolism under anoxic or denitrifying conditions (Shapir et al. 1998; Katz etal. 2000); demonstrate efficient bioaugmentation of an atrazine-contaminated soil (Newcombe & Crowley1999); examine a method for aquifer amelioration insitu (Shati et al. 1996); explore atrazine degradation
in soil, in comparison to other monocultures (Topp2001); elucidate sequences of the aerobic catabolic enzymes atzA (de Souza et al. 1996), atzB (Boundy-Mills et al. 1997) and atzC (Sadowsky et al. 1998) and develop probes for their encoding genes (de Souza etal. 1998b). 展开
1个回答
展开全部
翻译如下:
几位研究员报告了从妥协的站点的充实和隔离用不同的地区(Radosevich等1995年; Bouquardet Al 1997年; 胡瓜鱼等1998年; Topp等2000b能的)微生物: 在一个碳有限的媒介的dealkylate阿特拉津(Behki & Kahn1986); 矿化并且使用阿特拉津作为一个单一碳和能源(Mandelbaum等1995年; Yanze-Kontchou & Gschwind 1995年; Topp等2000b); 运用杂环氮气(Bichat等1999); 并且,在补充碳面前,矿化阿特拉津和它的代谢产物作为氮气(Mandelbaum的来源等1993年; Topp等2000a)。 Successfulmineralization >94%阿特拉津C (50μgml−1)和微生物的隔离,土壤杆菌radiobacter张力J14a,能对dealkylate, dehalogenate和矿化s三氮六环圆环,当分子使用了作为氮气来源,由Struthers等报告(1998)。 通过筛选知道是普遍存在的在土壤并且有不同的biodegradative能力的一些Rhodococcus张力, Behki (1993)等辨认了与a77千字节质粒的张力TE1以阿特拉津贬低的容量。 其他工作者reportedmicrobial协会(Mandelbaumet Al 1993年; Assaf & Turco 1994a, b; Alvey & Crowley1996; de Souza等1998a; Ralebitso等1999)和霉菌种类(Donnelly等1993年; Mougin和al.1994)哪些矿化了阿特拉津。阿特拉津异化微生物协会或单作showa优势杆状的细菌(表1)的Culturable土壤。 这些, Pseudomonassp。 劳损ADP,能够异化theherbicide在集中>1 000毫克l−1,成为了参考张力和广泛地使用了: 学习阿特拉津分解代谢在缺氧之下或去掉氮气适应(Shapir等1998年; Katz等2000); 展示阿特拉津污染的土壤的高效率的bioaugmentation (Newcombe & Crowley1999); 审查原地蓄水层的改良的一个方法(Shati等1996); 探索阿特拉津退化
in土壤,与其他单作(Topp2001)比较; 阐明有氧分解代谢的酵素atzA (de Souza等1996), atzB (Boundy磨房等1997)和atzC (Sadowsky的序列等1998)并且开发他们的内码基因的(de等Souza 1998b)探针。
几位研究员报告了从妥协的站点的充实和隔离用不同的地区(Radosevich等1995年; Bouquardet Al 1997年; 胡瓜鱼等1998年; Topp等2000b能的)微生物: 在一个碳有限的媒介的dealkylate阿特拉津(Behki & Kahn1986); 矿化并且使用阿特拉津作为一个单一碳和能源(Mandelbaum等1995年; Yanze-Kontchou & Gschwind 1995年; Topp等2000b); 运用杂环氮气(Bichat等1999); 并且,在补充碳面前,矿化阿特拉津和它的代谢产物作为氮气(Mandelbaum的来源等1993年; Topp等2000a)。 Successfulmineralization >94%阿特拉津C (50μgml−1)和微生物的隔离,土壤杆菌radiobacter张力J14a,能对dealkylate, dehalogenate和矿化s三氮六环圆环,当分子使用了作为氮气来源,由Struthers等报告(1998)。 通过筛选知道是普遍存在的在土壤并且有不同的biodegradative能力的一些Rhodococcus张力, Behki (1993)等辨认了与a77千字节质粒的张力TE1以阿特拉津贬低的容量。 其他工作者reportedmicrobial协会(Mandelbaumet Al 1993年; Assaf & Turco 1994a, b; Alvey & Crowley1996; de Souza等1998a; Ralebitso等1999)和霉菌种类(Donnelly等1993年; Mougin和al.1994)哪些矿化了阿特拉津。阿特拉津异化微生物协会或单作showa优势杆状的细菌(表1)的Culturable土壤。 这些, Pseudomonassp。 劳损ADP,能够异化theherbicide在集中>1 000毫克l−1,成为了参考张力和广泛地使用了: 学习阿特拉津分解代谢在缺氧之下或去掉氮气适应(Shapir等1998年; Katz等2000); 展示阿特拉津污染的土壤的高效率的bioaugmentation (Newcombe & Crowley1999); 审查原地蓄水层的改良的一个方法(Shati等1996); 探索阿特拉津退化
in土壤,与其他单作(Topp2001)比较; 阐明有氧分解代谢的酵素atzA (de Souza等1996), atzB (Boundy磨房等1997)和atzC (Sadowsky的序列等1998)并且开发他们的内码基因的(de等Souza 1998b)探针。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询