讨论下列函数的可导性和解析性

 我来答
bill8341
高粉答主

2018-01-07 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3539万
展开全部
设z=x+iy
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
所以u=e^xcosy,v=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都成立
即对于z∈C,f(z)=e^z都满足柯西黎曼条件
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式