求解谢谢了 帮帮忙
展开全部
f(a+b)=f(a).f(b), f(1)=2
To find : f(2)/f(1) +f(3)/f(2)+...+f(2015)/f(2014)
a=b=1 =>f(2)/f(1) = f(1) = 2
a=1, b=2 =>f(3)/f(2)= f(1) = 2
a=1, b=3 => f(4)/f(3) = f(1) =2
...
a=1, b=2014 => f(2015)/f(2014) = f(1) =2
f(2)/f(1) +f(3)/f(2)+...+f(2015)/f(2014)
=2+2+...+2
=2x2013
=4026
To find : f(2)/f(1) +f(3)/f(2)+...+f(2015)/f(2014)
a=b=1 =>f(2)/f(1) = f(1) = 2
a=1, b=2 =>f(3)/f(2)= f(1) = 2
a=1, b=3 => f(4)/f(3) = f(1) =2
...
a=1, b=2014 => f(2015)/f(2014) = f(1) =2
f(2)/f(1) +f(3)/f(2)+...+f(2015)/f(2014)
=2+2+...+2
=2x2013
=4026
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=f(1+1)/f(1)+f(2+1)/f(2)+…
=f(1)+f(1)+…
=2×2014=4028
=f(1)+f(1)+…
=2×2014=4028
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询