完整过程及答案,最好是手写拍照,谢谢
展开全部
设F(x)=x^2-xsinx-cosx F'(x)=2x-xcosx=x(2-cosx) 令F'(x)=0 求得唯一驻点x=0; 当x0,即F(x)在x∈(0,+∞)上单调递增;所以x=0时取最小值F(0)=-1 显然可知F(x)在(-∞,+∞)上连续且 lim F(x)=+∞ x->-∞ lim F(x)=+∞ x->+∞ 所以F(x)与X轴有2个交点,即x^2=xsinx+cosx 的实根的个数有2个.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询