关于花岗岩类的分类与命名
2020-01-16 · 技术研发知识服务融合发展。
岩浆岩的分类、命名是研究岩浆岩岩石学的重要基础。从19世纪中期齐克尔(J.Zirkel)和罗森布什(H.Roserbusch)等发表了火成岩的第一批分类表以来,分类和命名一直很受岩石学者所重视,许多岩石学者曾在这方面做过很多工作(O'Connor,1965;Streckeisen,1967,1976,1978,1979;Le Maitre,1976a;Streckeisen等,1979;吴利仁等,1982;De la Roche等,1980;Le Bas等,1986,1991;Le Maitre等,1989)。
火成岩的分类迄今还未达到完善的地步,目前还没有一个被大家都能接受的分类方案。这主要是由于各人采用的分类基础不同,同时由于所有各种类型的岩石都是以过渡形式相联系的,边缘岩石种类很多,例如粗面安山岩、安山玄武岩、花岗闪长岩、辉长闪长岩等等,要想在各个岩石种之间明确地划一条界线是困难的。此外,还由于火成岩的成因非常复杂,这些都给分类带来一定的困难。
(一)利用氧化物-氧化物图解进行火成岩石的分类
双变量氧化物 氧化物主要元素投影可能是进行火成岩石分类的最直观的方法。全碱-硅图解(TAS)分类便是其中之一。化学成分 Na2O和K2O的含量之和(全碱-TA)以及SiO2的含量(S)直接取自岩石分析数据的氧化物质量分数数据,投影到分类图解上就可达到岩石分类的目的。Wilson(1989)利用TAS图解进行侵入岩的初步分类。这个图解具有很强的实用性,因为还没有其他简单的侵入岩的化学分类图解。然而,这个图解中岩石区域的边界主要采用Cox等(1979)为火山岩设计的TAS图解中的界线,而这些界线与最新的火山岩TAS图解的岩石区域界线不一致。
(二)利用标准矿物进行火成岩石的分类
1.CIPW标准矿物
标准矿物计算是指根据岩石的化学成分计算出岩石的矿物组成的计算方法。依据岩石的标准矿物(假想矿物)可以进行岩石的化学分类。CIPW标准矿物是目前最常用的计算方案。
1972年在蒙特利尔(Montreal)第24届国际地质大会期间,国际地质科学联合会(IUGS)岩石学委员会下设的火成岩分类分会讨论并通过了所推荐的深成岩的分类和命名方案。这个分类是在A.Streckeisen(1967)分类基础上修订而成的。分类中使用Q、A、P、F双三角图形对深成岩进行划分。随后国际地质科学联合会火成岩分类分会于1979年又提出了与深成岩相对应的火山岩(熔岩)分类方案。这两个分类方案是目前使用的各种分类系统中比较实用的折中方案;虽然在某些方面尚不完善,但它基本上代表了世界各地区已使用的习惯,所以目前在国内和国外应用较广。Streckeisen(1976,1979)又对上述方案提出了进一步的修改和建议。在此基础上,国际地科联(IUGS)火成岩分类学委员会于1989年又推出了新的火成岩分类命名方案(Le Maitre等,1989)。
上述的Q、A、P、F值是依据 CIPW标准矿物成分计算出的,其难点就是钠长石如何在碱性长石和斜长石中分配的问题。Rittmann(1973)的稳定矿物组合法更接近实际情况,但由于其计算方法繁琐,使得其应用受到限制。吴利仁等(1982)提出了将 CIPW法与Rittmann(1973)中的长石配分法相结合,对火成岩岩石分类、命名的计算方法。
2.利用Ab-An-Or图解进行花岗岩的分类
O'Connor(1965)的Ab-An-Or图解能够用于进行标准矿物石英大于10%的长英质岩石的分类。图解完全以标准矿物长石的成分为分类基础,将其换算成100%,代表从“花岗岩”四面体Q-Ab-An-Or的角顶石英向长石平面的投影。Ab-An-Or图解主要用于侵入岩的分类。这个分类的长石的成分是按照Barth-Niggli阳离子标准矿物计算法计算的。Baker(1979)对这个图解做了修正,稍微扩大了更长花岗岩的区域和缩小了英云闪长岩的区域。这一修正的分类方案获得了广泛的应用(Rollison,1993)。
3.Streckeisen-Le Maitre的Q'(F')-ANOR图解
根据标准矿物成分,Streckeisen和Le Maitre(1979)提出了火山岩和侵入岩分类的Q'(F')-ANOR图解,它可以反映Streckeisen(1979)的QAPF分类(根据岩石的实际矿物进行的分类)。标准矿物计算运用Barth-Niggli阳离子标准矿物法。矩形图解的y轴可以反映二氧化硅的饱和程度,用石英含量Q'=Q/(Q+Or+Ab+An)和似长石含量F'=(Ne+Lc+Kp)/(Ne+Lc+Kp+Or+Ab+An)来度量。x轴反映长石成分的变化 [ANOR=100An/(Or+An)]。把钠长石排除在长石轴之外,可以避免如何将它分配到斜长石或者碱性长石中的困难。但是,这个分类图解没有得到广泛的应用(Rollison,1993)。
(三)利用阳离子进行火成岩石的分类
为了避免氧化物质量分数数据不能真实地反映岩石样品的阳离子分布,许多作者优先把岩石的化学成分计算为阳离子的形式。根据阳离子数进行火成岩分类。
De la Roche和Leterrier等(1980)提出了根据阳离子数(千阳离子数)进行火山岩和侵入岩的R1-R2图解分类方案。这个图解对于侵入岩特别有用。用投影参数R1和R2进行投影,构筑xy双变量图解。R1作为x轴,R2作为y轴,按下式计算:
R1=4Si-11(Na+K)-2(Fe+Ti)
R2=A1+2Mg+6Ca
其中,Si代表SiO2;Na代表Na2O;K代表K2O;Fe代表全铁;Ti代表TiO;Al代表Al2O3;Mg代表MgO;Ca代表CaO。
这个分类方案的优点是:
1)用了岩石的大多数的主要元素化学成分来分类,因此可以代表整个岩石;
2)分类方案可用来进行所有类型的岩石的分类,适用性广;
3)矿物成分也可以投影在图解之上,能够进行实际矿物成分与岩石的化学成分数据的广泛的对比,了解矿物成分对岩石化学的影响;
4)能够表示岩石的二氧化硅的饱和程度和长石的成分变化。
然而,这一特殊分类图解的问题是难以理解和难以应用的。参数R1和R2没有直观的含义,使得图解看起来难以理解。另外,区域边界是曲线的,不易复制。
(四)花岗岩类的成因分类
自从Read(1956)提出有各种不同的花岗岩以来,许多地质学家都试图区分各种不同类型的花岗岩类,并对其进行分类。目前国际上花岗岩类的成因分类不下20种,由于他们所采用的成因模式或所侧重的分类准则(如源区性质、壳幔物质的相对贡献、岩浆作用过程以及侵位类型)不同而造成一定差异(Barbarin,1990)。
Raguin(1957)把花岗岩类分为侵入花岗岩类和原地花岗岩类。Martin和Piwinskii(1972)划分为造山和非造山花岗岩类。Didier和Lameyre(1969)把花岗岩分为浅色花岗岩和二长花岗岩-花岗闪长岩。石原舜三(Ishihara,1977)把花岗岩类分为钛铁矿系列和磁铁矿系列。Chappell和White(1974,1983)把花岗岩类划分为I型、S型、M型、A型四种类型。
徐克勤等(1982)以源岩所在岩石圈的大致位置,将花岗岩分为同熔型、改造型、幔源型。Pearce等(1984)将花岗岩的形成环境与大地构造环境相联系,把花岗岩类分为洋脊、火山弧、板内、碰撞带型。按照花岗岩形成时的构造环境,Maniar和Piccoli(1989)将花岗岩分为岛弧花岗岩类(IAG)、大陆弧花岗岩类(CAG)、大陆碰撞花岗岩类(CCG)、后造山花岗岩类(POG)、与裂谷有关的花岗岩类(RRG)、与大陆的造陆抬生有关的花岗岩类(CEUG)、大洋斜长花岗岩类(OP)。杨树锋(1987)把花岗岩类分为以板块边界为主的板块俯冲幔源型、板缘挤压型(岛弧型)、板缘拉张型、板内改造型、板内裂谷型。Pitcher(1983,1987)把花岗岩类分为海西型、加里东型、Andino型、内太平洋型和尼日利亚型。
Barbarin(1990,1999)根据花岗岩类的主要岩石成因将花岗岩类分成了三大类(壳源、幔源和壳幔混合源)和八个亚类。这种分类以岩石学、矿物学和化学成分特征为准则,并将花岗岩类类型与构造环境相联系。
综上所述,迄今对火成岩的分类还未达到完善的地步,目前还没有一个被大家都能接受的分类。