三角形ABC,AB=AC,角BAC=90度,直角角EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,证明EF=AP

匿名用户
2009-05-27
展开全部
证明:连接AP
∵△ABc是等腰直角三角形
则AP⊥BC,∠PAF=45°,AP=BP
∵∠BPE+∠APE=∠APF+∠APE=90°
∴∠BPE=∠APF
∵∠B=∠PAF=45°,AP=BP
∴△BPE≌△APF
∴PE=PF

AP是定长,EF是变化的,EF =AP不成立
染可少4044
2009-05-27 · TA获得超过555个赞
知道答主
回答量:219
采纳率:0%
帮助的人:164万
展开全部
证明
∵△ABC是等腰直角三角形
则AP⊥BC,∠PAF=45°,AP=BP
∵∠BPE+∠APE=∠APF+∠APE=90°
∴∠BPE=∠APF
∵∠B=∠PAF=45°,AP=BP
∴△BPE≌△APF
∴PE=PF 所以矩形的邻边相等,得出 四边形APEF是正方形
所以得出结论 EF=AP(正方形对角线相等)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式