图中定积分如何计算
1个回答
展开全部
let
f(x) = x/[1+(sinx)^2]
f(-x)=-f(x)
=>∫(-π/2->π/2) x/[1+(sinx)^2] dx =0
∫(-π/2->π/2) (x+cosx)/[1+(sinx)^2] dx
=∫(-π/2->π/2) cosx/[1+(sinx)^2] dx
=2∫(0->π/2) cosx/[1+(sinx)^2] dx
=2∫(0->π/2) dsinx/[1+(sinx)^2]
=2[arctan(sinx)]|(0->π/2)
=π/2
f(x) = x/[1+(sinx)^2]
f(-x)=-f(x)
=>∫(-π/2->π/2) x/[1+(sinx)^2] dx =0
∫(-π/2->π/2) (x+cosx)/[1+(sinx)^2] dx
=∫(-π/2->π/2) cosx/[1+(sinx)^2] dx
=2∫(0->π/2) cosx/[1+(sinx)^2] dx
=2∫(0->π/2) dsinx/[1+(sinx)^2]
=2[arctan(sinx)]|(0->π/2)
=π/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询