为什么下列中不能用洛必达法则?
3个回答
展开全部
x->0
分子
(sinx)^2 = x^2 +o(x^2)
e^x = 1+ x +(1/2)x^2 +o(x^2)
(sinx)^2 +e^x = 1+x +(3/2)^2 +o(x^2)
ln[ (sinx)^2 +e^x ]
=ln[ 1+x +(3/2)^2 +o(x^2) ]
=[x +(3/2)x^2] -(1/2)[x +(3/2)^2]^2 +o(x^2)
=[x +(3/2)x^2] -(1/2)[x^2 +o(x)^2] +o(x^2)
=x +x^2 +o(x^2)
ln[ (sinx)^2 +e^x ] -x = x^2 +o(x^2)
分母
e^(2x) = 1+2x+ 2x^2 +o(x^2)
x^2+e^(2x) = 1+2x+ 3x^2 +o(x^2)
ln[x^2+e^(2x)]
=ln[1+2x+ 3x^2]
=[2x+ 3x^2] -(1/2)[2x+ 3x^2]^2 +o(x^2)
=[2x+ 3x^2] -(1/2)[4x^2+ o(x^2)] +o(x^2)
=2x + x^2 +o(x^2)
ln[x^2+e^(2x)] -2x = x^2 +o(x^2)
lim(x->0) { ln[ (sinx)^2 +e^x ] -x }/ { ln[x^2+e^(2x)] -2x }
=lim(x->0) x^2/x^2
=1
分子
(sinx)^2 = x^2 +o(x^2)
e^x = 1+ x +(1/2)x^2 +o(x^2)
(sinx)^2 +e^x = 1+x +(3/2)^2 +o(x^2)
ln[ (sinx)^2 +e^x ]
=ln[ 1+x +(3/2)^2 +o(x^2) ]
=[x +(3/2)x^2] -(1/2)[x +(3/2)^2]^2 +o(x^2)
=[x +(3/2)x^2] -(1/2)[x^2 +o(x)^2] +o(x^2)
=x +x^2 +o(x^2)
ln[ (sinx)^2 +e^x ] -x = x^2 +o(x^2)
分母
e^(2x) = 1+2x+ 2x^2 +o(x^2)
x^2+e^(2x) = 1+2x+ 3x^2 +o(x^2)
ln[x^2+e^(2x)]
=ln[1+2x+ 3x^2]
=[2x+ 3x^2] -(1/2)[2x+ 3x^2]^2 +o(x^2)
=[2x+ 3x^2] -(1/2)[4x^2+ o(x^2)] +o(x^2)
=2x + x^2 +o(x^2)
ln[x^2+e^(2x)] -2x = x^2 +o(x^2)
lim(x->0) { ln[ (sinx)^2 +e^x ] -x }/ { ln[x^2+e^(2x)] -2x }
=lim(x->0) x^2/x^2
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询