2个回答
展开全部
f(x-y,y-z,z-x)=0
两边同对x求偏导得到
fu(x-y,y-z,z-x) -fv(x-y,y-z,z-x)dz/dx +fw(x-y,y-z,z-x)(dz/dx-1) =0
同时对y求偏导得到
-fu(x-y,y-z,z-x) -fv(x-y,y-z,z-x)(1-dz/dy) +fw(x-y,y-z,z-x)dz/dy =0
这样就有了个对dz/dx和dz/dy的两个方程,分别求出dz/dx,dz/dy后加起来即可
两边同对x求偏导得到
fu(x-y,y-z,z-x) -fv(x-y,y-z,z-x)dz/dx +fw(x-y,y-z,z-x)(dz/dx-1) =0
同时对y求偏导得到
-fu(x-y,y-z,z-x) -fv(x-y,y-z,z-x)(1-dz/dy) +fw(x-y,y-z,z-x)dz/dy =0
这样就有了个对dz/dx和dz/dy的两个方程,分别求出dz/dx,dz/dy后加起来即可
展开全部
16. 令 v = y-z, w = z-x ,则 x-y = -(v+w), f(-v-w, v, w) = 0 (1).
式 (1) 两边对 x 求偏导, f'1(-∂v/∂x-∂w/∂x) + f'2∂v/∂x + f'3∂w/∂x = 0
f'1(∂z/∂x-∂z/∂x+1) + f'2(-∂z/∂x) + f'3(∂z/∂x-1) = 0
f'1 - (f'2-f'3)(∂z/∂x) - f'3 = 0, f'2-f'3 即 f'v-f'w 不为零,则
∂z/∂x = (f'1-f'3)/(f'2-f'3);
式 (1) 两边对 y 求偏导, f'1(-∂v/∂y-∂w/∂y) + f'2∂v/∂y + f'3∂w/∂y = 0
f'1(1-∂z/∂y-∂z/∂y) + f'2(1-∂z/∂y) + f'3(∂z/∂y) = 0
f'1 + f'2 - (f'2-f'3)(∂z/∂y) = 0, 则 ∂z/∂y = (f'1+f'2)/(f'2-f'3).
得 ∂z/∂x + ∂z/∂y = 1
式 (1) 两边对 x 求偏导, f'1(-∂v/∂x-∂w/∂x) + f'2∂v/∂x + f'3∂w/∂x = 0
f'1(∂z/∂x-∂z/∂x+1) + f'2(-∂z/∂x) + f'3(∂z/∂x-1) = 0
f'1 - (f'2-f'3)(∂z/∂x) - f'3 = 0, f'2-f'3 即 f'v-f'w 不为零,则
∂z/∂x = (f'1-f'3)/(f'2-f'3);
式 (1) 两边对 y 求偏导, f'1(-∂v/∂y-∂w/∂y) + f'2∂v/∂y + f'3∂w/∂y = 0
f'1(1-∂z/∂y-∂z/∂y) + f'2(1-∂z/∂y) + f'3(∂z/∂y) = 0
f'1 + f'2 - (f'2-f'3)(∂z/∂y) = 0, 则 ∂z/∂y = (f'1+f'2)/(f'2-f'3).
得 ∂z/∂x + ∂z/∂y = 1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询