基于深度卷积神经网络进行人脸识别的原理是什么?

 我来答
jtznwd981
2017-12-11 · TA获得超过439个赞
知道答主
回答量:307
采纳率:96%
帮助的人:72.1万
展开全部

本质上是模式识别,把现实的东西抽象成计算机能够理解的数字。
如果一个图片是256色的,那么图像的每一个像素点,都是0到255中间的一个值,这样你可以把一个图像转换成一个矩阵。
如何去识别这个矩阵中的模式?用一个相对来讲很小的矩阵在这个大的矩阵中从左到右,从上到下扫一遍,每一个小矩阵区块内,你可以统计0到255每种颜色出现的次数,以此来表达这一个区块的特征。这样通过这一次“扫描”,你得到了另一个由很多小矩阵区块特征组成的矩阵。
这一个矩阵比原始的矩阵要小吧?那就对了!
然后对这个小一点的矩阵,再进行一次上面的步骤,进行一次特征“浓缩”,用另一个意思来讲,就是把它抽象化。
最后经过很多次的抽象化,你会将原始的矩阵变成一个 1 维乘 1 维的矩阵,这就是一个数字。
而不同的图片,比如一个猫,或者一个狗,一个熊,它们最后得到的这个数字会不同。于是你把一个猫,一个狗,一个熊都抽象成了一个数字,比如 0.34, 0.75, 0.23,这就达到让计算机来直接辨别的目的了。
人脸,表情,年龄,这些原理都是类似的,只是初始的样本数量会很大,最终都是通过矩阵将具体的图像抽象成了数字,因为计算机只认识数字。
但是抽象的函数,会有所不同,达到的效果也会不同。

迪rqtbdc61
2017-12-11 · TA获得超过367个赞
知道答主
回答量:290
采纳率:98%
帮助的人:75万
展开全部

对工程研究,原理(How)往往来自于别的领域,CNN的图像识别是启发自视觉神经(一种被研究的最透彻的神经结构)研究的发现,人民发现人的视觉就是这么工作的,然后试着用它在机器上实现,当有足够快的电脑和多的数据时,人们兴奋的发现可以做高质量的图像识别。
原理的解释通常要晚一些。但是抽象的解释并不难:把信息一层层的抽象,最底下是像素,中间是各种特征,越往上越抽象(边,圆,胡子,高鼻梁...)。
研究科学不光是看论文:你拿一副照片贴着眼睛看,慢慢拿远大概可以帮助理解。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式