高数,求解答过程,谢谢
展开全部
令arcsinx=t,则x=sint.
x=0时,t=0;x=√3/2时,t=π/3.
原式=∫[0,π/3]t² d(sint)
=t²sint|[0,π/3] -2∫[0,π/3]t sintdt
=(π/3)² · √3/2 -0+2∫[0,π/3]t d(cost)
=√3π²/18 +2t cost|[0,π/3] -2∫[0,π/3]costdt
=√3π²/18 +π/3-0-2sint|[0,π/3]
=√3π²/18 +π/3 - 2(√3/2 -0)
=√3π²/18 +π/3 - √3
x=0时,t=0;x=√3/2时,t=π/3.
原式=∫[0,π/3]t² d(sint)
=t²sint|[0,π/3] -2∫[0,π/3]t sintdt
=(π/3)² · √3/2 -0+2∫[0,π/3]t d(cost)
=√3π²/18 +2t cost|[0,π/3] -2∫[0,π/3]costdt
=√3π²/18 +π/3-0-2sint|[0,π/3]
=√3π²/18 +π/3 - 2(√3/2 -0)
=√3π²/18 +π/3 - √3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询