为什么奇函数定积分是0?
x轴上方是正的下方是负的所以是0但sinx0到2pai的上下方不也可以抵消吗为什么sin的定积分不是0为什么sinx0到pai的定积分一定要变成2∫0pai/2sindx...
x轴上方是正的 下方是负的 所以是0 但sinx 0到2pai 的上下方不也可以抵消吗 为什么sin的定积分不是0
为什么sinx 0到pai 的定积分 一定要变成 2∫0 pai/2 sindx 这样算 如果不变就变成0 展开
为什么sinx 0到pai 的定积分 一定要变成 2∫0 pai/2 sindx 这样算 如果不变就变成0 展开
6个回答
展开全部
奇函数定积分是零的条件是积分域关于原点对称,sin比较特别,是周期函数,积分域关于kπ对称都是零。
特点:
1、奇函数图象关于原点对称。
2、奇函数的定义域必须关于原点对称,否则不能成为奇函数。
3、若为奇函数,且在x=0处有意义。
4、设在定义域上可导,若在上为奇函数,则在上为偶函数即对其求导f'(x)=[-f(-x)]'(-x)'=-f'(-x)(-1)=f'(-x)。
扩展资料:
“古代几何学家,更确切地说 是古代分析学家,将某个量x的不同次幂称为x的函数.”类似地,法国数学家拉格朗日《解析函数论》(1797)开篇中也说,早期分析学家们使用“函数”这个词,只是表示“同一个量的不同次幂”。
其涵义被推广,表示“以任一方式得自其他量的所有量”,莱布尼茨和约翰· 伯努利最早采用了后一涵义。在1727年的论文中,欧拉在讨论奇、偶函数时确实没有涉及任何超越函数。因此,最早的奇、偶函数概念都是针对幂函数以及相关复合函数而言。
参考资料来源:百度百科-奇函数
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
奇函数是一类具有特殊性质的函数,其定义是 f(-x) = -f(x) 对于函数的定义域内的所有 x 都成立。简单来说,当 x 变为相反数时,奇函数的函数值变为原函数值的相反数。举例来说,一个常见的奇函数是 f(x) = x,因为 f(-x) = -(-x) = x。
奇函数的定积分在对称区间上的值是0,这是因为在对称区间上,正负函数值的面积相互抵消,导致定积分为0。
形式化地来说,对于一个奇函数 f(x),在区间 [-a, a] 上的定积分可以表示为:
∫[a, -a] f(x) dx
由于奇函数的特性 f(-x) = -f(x),我们可以进行变量替换,令 u = -x,那么 du = -dx。同时,当 x = a 时,u = -a,当 x = -a 时,u = a。因此,上述定积分可以转化为:
∫[-a, a] -f(u) du
由于奇函数的性质 f(-x) = -f(x),可以得知 f(u) = -f(-u)。因此,定积分可以进一步简化为:
-∫[-a, a] f(-u) du
在对称区间 [-a, a] 上,被积函数 f(-u) 与 f(u) 具有相同的绝对值,但符号相反。这意味着它们在该区间上的面积相互抵消,导致定积分结果为0:
-∫[-a, a] f(-u) du = 0
所以,奇函数的定积分在对称区间上是0。
奇函数的定积分在对称区间上的值是0,这是因为在对称区间上,正负函数值的面积相互抵消,导致定积分为0。
形式化地来说,对于一个奇函数 f(x),在区间 [-a, a] 上的定积分可以表示为:
∫[a, -a] f(x) dx
由于奇函数的特性 f(-x) = -f(x),我们可以进行变量替换,令 u = -x,那么 du = -dx。同时,当 x = a 时,u = -a,当 x = -a 时,u = a。因此,上述定积分可以转化为:
∫[-a, a] -f(u) du
由于奇函数的性质 f(-x) = -f(x),可以得知 f(u) = -f(-u)。因此,定积分可以进一步简化为:
-∫[-a, a] f(-u) du
在对称区间 [-a, a] 上,被积函数 f(-u) 与 f(u) 具有相同的绝对值,但符号相反。这意味着它们在该区间上的面积相互抵消,导致定积分结果为0:
-∫[-a, a] f(-u) du = 0
所以,奇函数的定积分在对称区间上是0。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
奇函数是指满足 f(-x) = -f(x) 的函数,即函数关于原点对称。奇函数的定积分在对称区间上的值总是为零。
这可以通过定积分的性质来解释。定积分可以理解为曲线下的面积,而奇函数的特点是曲线关于原点对称。因此,对于奇函数在对称区间上的定积分,正值和负值的面积会互相抵消,导致总的定积分为零。
具体来说,对于一个奇函数 f(x) 在对称区间 [-a, a] 上的定积分,我们可以将其分成两个部分进行计算:
∫[-a, a] f(x) dx = ∫[-a, 0] f(x) dx + ∫[0, a] f(x) dx
由于奇函数的性质,f(x) 和 -f(x) 在对称区间上的面积相等,即:
∫[-a, 0] f(x) dx = -∫[0, a] f(x) dx
因此,两个部分的面积相互抵消,定积分的结果为零:
∫[-a, a] f(x) dx = ∫[-a, 0] f(x) dx + ∫[0, a] f(x) dx = -∫[0, a] f(x) dx + ∫[0, a] f(x) dx = 0
这就是为什么奇函数的定积分在对称区间上的值为零。
这可以通过定积分的性质来解释。定积分可以理解为曲线下的面积,而奇函数的特点是曲线关于原点对称。因此,对于奇函数在对称区间上的定积分,正值和负值的面积会互相抵消,导致总的定积分为零。
具体来说,对于一个奇函数 f(x) 在对称区间 [-a, a] 上的定积分,我们可以将其分成两个部分进行计算:
∫[-a, a] f(x) dx = ∫[-a, 0] f(x) dx + ∫[0, a] f(x) dx
由于奇函数的性质,f(x) 和 -f(x) 在对称区间上的面积相等,即:
∫[-a, 0] f(x) dx = -∫[0, a] f(x) dx
因此,两个部分的面积相互抵消,定积分的结果为零:
∫[-a, a] f(x) dx = ∫[-a, 0] f(x) dx + ∫[0, a] f(x) dx = -∫[0, a] f(x) dx + ∫[0, a] f(x) dx = 0
这就是为什么奇函数的定积分在对称区间上的值为零。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在对称区间[- a,a]上,被积函数为奇函数,以对称区间端点为积分上下限的定积分所形成的图像正负面积抵消,故有定积分结果等于0。关于sinx的定积分,你动手算算看,对不对?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
奇函数定积分是零的条件是积分域关于原点对称,sin比较特别,是周期函数,积分域关于kπ对称都是零
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询