已知直线l与点A(3,3)和B(5,2)的距离相等,且过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程。
4个回答
展开全部
因为经过3x-y-1=0.2x+y-3=0,解得:直线l经过P(4/5,7/5),可求得直线方程l为y-7/5=k(x-4/5),再用点到直线距离的公式求出k,代入即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由直线L1、直线L2方程可得交点为(1,2),那么可设所求直线的方程为Y=k(x-1)+2,因为点A、点B到直线的距离相等,所以dA=dB由点到直线的距离可解得k=1/6,k=-1/2代入所设方程即可得,X-6Y+11=0或X+2Y-5=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解法一:
设l
1
与l
2
的交点为P(x,y),l的斜率为k,
由
解得
∴P(1,2).
(1)当l∥AB时,有k=k
AB
=-
,则l的方程为y-2=-
(x-1),即x+2y-5=0.
(2)当l过AB的中点M时,易得M(4,
).
∴l的方程为
,即x-6y+11=0.
∴直线l的方程为x+2y-5=0或x-6y+11=0.
解法二:
设l的方程为(3x-y-1)+λ(x+y-3)=0,即(3+λ)x+(λ-1)y-1-3λ=0.
∵d
A
=d
B
,
∴
=
.
解得λ=-7或λ=-
.
代入l方程,得x+2y-5=0或x-6y+11=0.
设l
1
与l
2
的交点为P(x,y),l的斜率为k,
由
解得
∴P(1,2).
(1)当l∥AB时,有k=k
AB
=-
,则l的方程为y-2=-
(x-1),即x+2y-5=0.
(2)当l过AB的中点M时,易得M(4,
).
∴l的方程为
,即x-6y+11=0.
∴直线l的方程为x+2y-5=0或x-6y+11=0.
解法二:
设l的方程为(3x-y-1)+λ(x+y-3)=0,即(3+λ)x+(λ-1)y-1-3λ=0.
∵d
A
=d
B
,
∴
=
.
解得λ=-7或λ=-
.
代入l方程,得x+2y-5=0或x-6y+11=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为L1过(0,3),设y=kx
3
把(3,0)带入k=-1
所以L1:y=-x
3
因为设L2:y=ax
b
把两点带入
a
b=2
-2a
b=-3
解得a=5/3,b=1/3
所以L2:3y=5x
1
列方程组:
y=-x
3
3y=5x
1
解得x=1,y=2
求得D(1,2)
设l为y=ax+b
带入CD两个点,得a=1/6,b=11/6
所以l的方程是x-6y+11=0
3
把(3,0)带入k=-1
所以L1:y=-x
3
因为设L2:y=ax
b
把两点带入
a
b=2
-2a
b=-3
解得a=5/3,b=1/3
所以L2:3y=5x
1
列方程组:
y=-x
3
3y=5x
1
解得x=1,y=2
求得D(1,2)
设l为y=ax+b
带入CD两个点,得a=1/6,b=11/6
所以l的方程是x-6y+11=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询