一元函数中,连续,可导,可微之间的关系?

 我来答
越晗蕾溥阳
2019-03-27 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:26%
帮助的人:808万
展开全部
一元:
可导必连续,连续必存在极限,(单向)
可微与可导互推
多元:
一阶偏导连续推出
可微,(单向)
可微推出(1)偏导存在
(单向)
(2)函数连续
(单向)
函数连续推出二重极限存在(单向)
/**************************************************************/
函数在x0点连续的充要条件为f(x0)=lim(x→x0)f(x),即函数在此点函数值存在,并且等于此点的极限值
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的充要条件是此函数在此点必须连续,并且左导数等于右倒数。(我们老师曾经介绍过一个weierstrass什么维尔斯特拉斯的推导出来的函数处处连续却处处不可导,有兴趣可以查一下)
可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。
函数可积只有充分条件为:①函数在区间上连续②在区间上不连续,但只存在有限个第一类间断点(跳跃间断点,可去间断点)上述条件实际上为黎曼可积条件,可以放宽,所以只是充分条件
可导必连续,连续不一定可导,即可导是连续的充分条件,连续是可导的必要条件
一元函数中可导与可微等价,多元函数中可微必可导,可导不一定可微,即可微是可导的充分条件,可导是可微的必要条件
所以按条件强度可微≥可导≥连续
可积与可导可微连续无必然关系
百度网友3f86b4d33c4
游戏玩家

2020-02-26 · 游戏我都懂点儿,问我就对了
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:595万
展开全部
一元函数与多元函数连续,可导,可微之间的关系:
1、一元函数涉及的是两维曲线,多元函数涉及到的是至少是三维的曲面。
一元函数的可导可微只要从左右两侧考虑;
多元函数的可导可微,必须从各个角度,各个方向,各个侧面,进行前后、
左右、上下、侧斜等等方向的左右两侧考虑。
2、一元函数,只要曲线光滑--没有尖点、没有断点,切线垂直于x轴就行,
也就是不能斜率为无穷大
多元函数的要求就是一方面曲面光滑--没有裂缝、没有皱褶。同样没有垂直
于各个坐标的垂直切线。
3、一元函数的求导,就是简单的沿着x轴考虑曲线变化率,考虑曲线的连续性、
可导性、凹凸性等等;
多元函数要考虑在某一个方向的特殊导数--方向导数。方向导数取得最大值
的方向,就是梯度的方向,而它的反方向一定存在一个力,整体存在一个力
场。例如温度增加得最快的方向,其反方向就是热流的方向;如电势增加得
最快的方向,反方向就是电场力的方向。这样的例子举不胜举。
4、一元函数的可导可微没有什么惊人区别,工程上的误差计算:
Δy
=
(dy/dx)Δx,
dy/dx
利用的是可导,
Δx,
Δy
运用的就是可微。
无论是牛顿的近似计算,还是用麦克劳琳级数计算,还是用泰勒技术计算,
也都是运用的可导性与可微性。
在多元函数中,就不一样了,u
=
f(x,y,z),
随便写出
du/dx,
du/dy,
dy/dz
都是错误的。我们可以有三种写法:
du
=
(∂u/∂x)dx
+
(∂u/∂y)dy
+
(∂u/∂z)dz
du/dt
=
(∂u/∂x)dx/dt
+
(∂u/∂y)dy/dt
+
(∂u/∂z)dz/dt
grad
u
=
(∂u/∂x)i
+
(∂u/∂y)j
+
(∂u/∂z)k
(i,j,
k
是单位矢量)
5、一元函数可微就是可导,可导就可微;
多元函数可导就含糊了,沿100万个方向可偏导,只要一个方向不可偏导,
就不可微,只要可微,就表示沿各个方向可偏导;
多元函数,在任何方向的导数都是偏导。没有全导的概念,只有偏导、偏
微、全微的概念。如果讲全导,则是意指上面的du/dt的情况。
6、在一元函数,我们可以计算极值点
在多元函数中,当然仍然有极值点的计算。但是可能多出了一个极值面,
或极值曲线的概念。例如,在引力场中,物体下滑时,沿什么样的曲线最
快?这就要涉及多元函数的张量问题。
7、一元函数,通常是常微分的解;多元函数是偏微分的解。
总而言之,言而总之,多元函数考虑的情况是三维以上的情况,考虑的因素多了许多,基本上仍然是一元微积分的应用。本质上没有区别,只是在复杂程度上,麻烦了许多
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式