已知不等式mx²-2x+m-2<0.若对于所有的实数x不等式恒成立,求m的取值范围.
3个回答
展开全部
不等式mx²-2x+m-2<0.若对于所有的实数x不等式恒成立
则抛物线开口向下,且顶点<0
抛物线开口向下:m<0
顶点x=-(-2)/(2m)=1/m
y最大=m*(1/m)²-2/m+m-2<0
1/m-2/m+m-2<0
-1/m+m-2<0
通分(m²-2m-1)/m<0
即(m²-2m-1)m<0
由于抛物线开口向下m<0
所以m²-2m-1>0
(m-1)²-2>0
则m>±√2+1
考虑到m<0
则m的范围是(1-√2,0)
则抛物线开口向下,且顶点<0
抛物线开口向下:m<0
顶点x=-(-2)/(2m)=1/m
y最大=m*(1/m)²-2/m+m-2<0
1/m-2/m+m-2<0
-1/m+m-2<0
通分(m²-2m-1)/m<0
即(m²-2m-1)m<0
由于抛物线开口向下m<0
所以m²-2m-1>0
(m-1)²-2>0
则m>±√2+1
考虑到m<0
则m的范围是(1-√2,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不等式mx²-2x+m-2<0.若对于所有的实数x不等式恒成立
若m=0则2x-2<0
不成立
若m≠0则抛物线开口应向下即m<0
且顶点<0
顶点x=-(-2)/(2m)=1/m
x=1/m时m*(1/m)²-2/m+m-2<0
1/m-2/m+m-2<0
1-2+m^2-2m>0
m^2-2m-1>0
解方程m^2-2m-1=0得m=1-√2
或
m=1+√2即m<1-√2
或
m>1+√2(舍)
若m=0则2x-2<0
不成立
若m≠0则抛物线开口应向下即m<0
且顶点<0
顶点x=-(-2)/(2m)=1/m
x=1/m时m*(1/m)²-2/m+m-2<0
1/m-2/m+m-2<0
1-2+m^2-2m>0
m^2-2m-1>0
解方程m^2-2m-1=0得m=1-√2
或
m=1+√2即m<1-√2
或
m>1+√2(舍)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询