x^2+y^2=1,2xy/x+y-1的最小值
展开全部
楼上全错,正确的如下:
已知x²+y²=1,求2xy/(x+y-1)的最小值。
解:由于(x-y)²≥0,展开得:2xy≤x²+y²,则有:
x²+y²+2xy≤2(x²+y²)
(x+y)²≤2(x²+y²)=2
得:-√2≤x+y≤√2,
所以有:
2xy/(x+y-1)
=(x²+y²+2xy-1)/(x+y-1)
=[(x+y)²-1]/(x+y-1)
=(x+y+1)(x+y-1)/(x+y-1)
=x+y+1≥1-√2
因此,2xy/(x+y-1)的最小值是1-√2。
已知x²+y²=1,求2xy/(x+y-1)的最小值。
解:由于(x-y)²≥0,展开得:2xy≤x²+y²,则有:
x²+y²+2xy≤2(x²+y²)
(x+y)²≤2(x²+y²)=2
得:-√2≤x+y≤√2,
所以有:
2xy/(x+y-1)
=(x²+y²+2xy-1)/(x+y-1)
=[(x+y)²-1]/(x+y-1)
=(x+y+1)(x+y-1)/(x+y-1)
=x+y+1≥1-√2
因此,2xy/(x+y-1)的最小值是1-√2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询