设数列a n 的前n项的和为S n , a 1 = 3 2 , S n =2 a n+1 -3 .(1)求a 2 ,a 3
设数列an的前n项的和为Sn,a1=32,Sn=2an+1-3.(1)求a2,a3;(2)求数列an的通项公式;(3)设bn=(2log32an+1)?an,求数列bn的...
设数列a n 的前n项的和为S n , a 1 = 3 2 , S n =2 a n+1 -3 . (1)求a 2 ,a 3 ; (2)求数列a n 的通项公式; (3)设 b n =(2lo g 3 2 a n +1)? a n ,求数列b n 的前n项的和T n .
展开
1个回答
展开全部
解(1)∵
a
1
=
3
2
,
S
n
=2
a
n+1
-3
∴S
1
=2a
2
-3
∴
a
2
=
a
1
+3
2
=
9
4
(1分)
同理S
2
=2a
3
-3
∴
a
3
=
a
1
+
a
2
+3
2
=
27
8
.(2分)
(2)当n≥2时,a
n
=S
n
-S
n-1
=2a
n+1
-3-(2a
n
-3)
即
a
n+1
=
3
2
a
n
.(4分)
由(1)显然
a
2
=
3
2
a
1
(5分)
∴a
n
是以
a
1
=
3
2
为首项
3
2
为公比的等比数列
∴
a
n
=(
3
2
)
n
(6分)
(3)由(2)知
b
n
=(2lo
g
3
2
a
n
+1)?
a
n
=[2lo
g
3
2
(
3
2
)
n
+1]?(
3
2
)
n
=(2n+1)?(
3
2
)
n
..(7分)
T
n
=3?
(
3
2
)
1
+5?
(
3
2
)
2
+7?
(
3
2
)
3
++(2n-1)?
(
3
2
)
n-1
+(2n+1)?
(
3
2
)
n
①
3
2
T
n
=3?
(
3
2
)
2
+5?
(
3
2
)
3
+7?
(
3
2
)
4
++(2n-1)?
(
3
2
)
n
+(2n+1)?
(
3
2
)
n+1
②(8分)
①-②得
-
1
2
T
n
=
9
2
+2?
(
3
2
)
2
+2?
(
3
2
)
3
++2?
(
3
2
)
n-1
-(2n+1)?
(
3
2
)
n+1
=
9
2
+2[
(
3
2
)
2
+
(
3
2
)
3
++
(
3
2
)
n-1
]-(2n+1)?
(
3
2
)
n+1
=
9
2
+2×
9
4
[1-
(
3
2
)
n-1
]
1-
3
2
-(2n+1)?
(
3
2
)
n+1
=(
9
2
-3n)?
(
3
2
)
n
-
9
2
(11分)
∴
T
n
=(6n-9)?(
3
2
)
n
+9
(12分)
a
1
=
3
2
,
S
n
=2
a
n+1
-3
∴S
1
=2a
2
-3
∴
a
2
=
a
1
+3
2
=
9
4
(1分)
同理S
2
=2a
3
-3
∴
a
3
=
a
1
+
a
2
+3
2
=
27
8
.(2分)
(2)当n≥2时,a
n
=S
n
-S
n-1
=2a
n+1
-3-(2a
n
-3)
即
a
n+1
=
3
2
a
n
.(4分)
由(1)显然
a
2
=
3
2
a
1
(5分)
∴a
n
是以
a
1
=
3
2
为首项
3
2
为公比的等比数列
∴
a
n
=(
3
2
)
n
(6分)
(3)由(2)知
b
n
=(2lo
g
3
2
a
n
+1)?
a
n
=[2lo
g
3
2
(
3
2
)
n
+1]?(
3
2
)
n
=(2n+1)?(
3
2
)
n
..(7分)
T
n
=3?
(
3
2
)
1
+5?
(
3
2
)
2
+7?
(
3
2
)
3
++(2n-1)?
(
3
2
)
n-1
+(2n+1)?
(
3
2
)
n
①
3
2
T
n
=3?
(
3
2
)
2
+5?
(
3
2
)
3
+7?
(
3
2
)
4
++(2n-1)?
(
3
2
)
n
+(2n+1)?
(
3
2
)
n+1
②(8分)
①-②得
-
1
2
T
n
=
9
2
+2?
(
3
2
)
2
+2?
(
3
2
)
3
++2?
(
3
2
)
n-1
-(2n+1)?
(
3
2
)
n+1
=
9
2
+2[
(
3
2
)
2
+
(
3
2
)
3
++
(
3
2
)
n-1
]-(2n+1)?
(
3
2
)
n+1
=
9
2
+2×
9
4
[1-
(
3
2
)
n-1
]
1-
3
2
-(2n+1)?
(
3
2
)
n+1
=(
9
2
-3n)?
(
3
2
)
n
-
9
2
(11分)
∴
T
n
=(6n-9)?(
3
2
)
n
+9
(12分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询