微积分的一个问题,涉及三角函数?

画圈的地方,是怎么消去的... 画圈的地方,是怎么消去的 展开
 我来答
tllau38
高粉答主

2020-11-15 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:1.9亿
展开全部
x->0
cosαx = 1-(1/2)(αx)^2+o(x^2)
sinx.cosαx = x-(1/2)(αx)^2+o(x^2)
1+sinx.cosαx = 1+x-(1/2)(αx)^2+o(x^2)
ln(1+sinx.cosαx)
=ln[1+x-(1/2)(αx)^2+o(x^2)]
=[x-(1/2)(αx)^2+o(x^2)] -(1/2)[x-(1/2)(αx)^2+o(x^2)]^2 +o(x^2)
=[x-(1/2)(αx)^2+o(x^2)] -(1/2)[x^2+o(x^2)] +o(x^2)
=x +[ -(1/2)α^2 - 1/2 ]x^2 +o(x^2)
Similarly
ln(1+sinx.cosβx) =x +[ -(1/2)β^2 - 1/2 ]x^2 +o(x^2)
ln[ (1+ sinx.cosαx)/(1+sinx.cosβx)]
=ln(1+ sinx.cosαx)-ln(1+sinx.cosβx)
=[(1/2)β^2 -(1/2)α^2 ] x^2 +o(x^2)
//
lim(x->0) [ (1+ sinx.cosαx)/(1+sinx.cosβx)]^(cotx)^2
=lim(x->0) e^{ln[ (1+ sinx.cosαx)/(1+sinx.cosβx)] / (tanx)^2 }
=lim(x->0) e^{ln[ (1+ sinx.cosαx)/(1+sinx.cosβx)] / x^2 }
=lim(x->0) e^{ [(1/2)β^2 -(1/2)α^2 ] x^2 / x^2 }
=e^ [(1/2)β^2 -(1/2)α^2 ]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式