在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,试说明:BD²=AB²+BC²

 我来答
务隽晁淑哲
2019-03-04 · TA获得超过3642个赞
知道大有可为答主
回答量:3053
采纳率:27%
帮助的人:421万
展开全部
解:分析:待证明的等式说明AB,BC,BD三条线段可组成一个直角三角形.因此,应设法将它们集中到一起.从条件容易知道,三角形ADC是一个正三角形.这样,就可一将三角形BCD作旋转变换.得到以下证明方法:
证明:连结AC,因为AD=DC,∠ADC=60°
则△ACD是等边三角形.
过B作BE⊥AB,使BE=BC,连结CE,AE
则∠EBC=90°-∠ABC=90°-30°=60°
∴△BCE是正三角形,
又∠ACE=∠ACB+∠BCE
=∠ACB+60°
∠DCB=∠ACB+∠ACD
=∠ACB+60°
∴∠ACE=∠DCB
又DC=AC,BC=CE
所以△DCB≌△ACE
所以AE=BD
在直角三角形ABE中AE^2=AB^2+BE^2
即BD^2=AB^2+BC^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式