空间曲线积分中ds和 dx*dy的转化是怎么转化的?

 我来答
乾暄秋梵0kO
2020-08-26 · TA获得超过510个赞
知道小有建树答主
回答量:1775
采纳率:0%
帮助的人:170万
展开全部


主要考查两种类型曲线积分的转换,先将x和y转换成极坐标形式,再找到切向量陶τ,进行替换,没有了带θ的形式,将τds看作整体,借助桥梁,换成dx和dy的形式,就可利用格林公式,问题便迎刃而解。

这类问题要把握本质。微元ds的定义起源和dx、dy有直接联系。

单位切向量就是n0=(cos alpha, cos beta)

此为(dx,dy)的单位向量,而(dx, dy)的模即为ds即弧微元

从而有dx=cos(alpha)ds,dy=cos(beta)ds

(dx, dy)=(cos alpha, cos beta)ds=n0•ds

将此代入式中即可。

扩展资料:

曲线积分分为:

(1)对弧长的曲线积分 (第一类曲线积分)

(2)对坐标轴的曲线积分(第二类曲线积分)

两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。

但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。

参考资料来源:百度百科-曲线积分





推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式