常微分方程? 5

完全没有思路不知道从何下手希望大神解答十分感谢!... 完全没有思路不知道从何下手 希望大神解答 十分感谢! 展开
 我来答
射手座xuke99
2020-11-21 · TA获得超过228个赞
知道小有建树答主
回答量:1681
采纳率:0%
帮助的人:36.1万
展开全部
常微分方程,属数学概念。学过中学数学的人对于方程是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。[1]

中文名
常微分方程
外文名
Ordinary differential equation
学科所属
数学
理论基础
极限理论
数学范畴
高等数学-纯数学
快速
导航
定义

特点

应用

发展

分支学科

实例

解法
概念
学过中学数学的人对于方程是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等,要以现有数据求得出形式上的函数解析式,而不是以已知函数来计算特定的未知数。

常微分方程
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。
在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。
牛顿研究天体力学和机械动力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。[2]
追问
不会就不要到处复制粘贴
帐号已注销
2020-11-24 · TA获得超过873个赞
知道小有建树答主
回答量:1934
采纳率:75%
帮助的人:58.1万
展开全部
微积分的问题其实非常简单,只要你做题总结就可以。但是我要告诉你,你想要真正的把微积分融入到你的骨髓里面,你需要去看一些较有兴趣的书籍了。
下面这段历史也许能帮你坚定学习微积分的决
心:1665年,伦敦爆发鼠疫,剑桥大学关闭,一
位年轻人不得不返回家乡,在家乡的两年中,他
主要研究了微积分、万有引力定律和光学,这些
理论对后世产生了巨大的影响,而这个年轻人正
是我们所熟知的牛顿大神。
这本书讲什么?
这本经典著作源于风靡美国普林斯顿大学的阿德
里安·班纳教授的微积分复习课程,将易用性与可
读性以及内容的深度与数学的严谨完美地结合在
了一起,激励学生不再惧怕微积分,并在考试中
获得高分。
本书阐述了求解微积分的技巧,详细讲解了微积
分基础、极限、连续、微分、导数的应用、积
分、无穷级数、泰勒级数与幂级数等内容,旨在
教会读者如何思考问题从而找到解题所需的知识
点,着重训练大家自己解答问题的能力。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式