1个回答
展开全部
g(x) = xarcsin(x/2)
g'(x)
=arcsin(x/2) + { x/√[1- (x/2)^2] } (1/2)
=arcsin(x/2) + (1/2)[ 1/√(4- x^2) ]
h(x)=√(4-x^2)
h'(x)
=(1/2)(4-x^2)^(-1/2) .(-2x)
=-x/√(4- x^2)
y=xarcsin(x/2) +√(4-x^2)
y'=arcsin(x/2) + (1/2)[ 1/√(4- x^2) ] -x/√(4- x^2)
g'(x)
=arcsin(x/2) + { x/√[1- (x/2)^2] } (1/2)
=arcsin(x/2) + (1/2)[ 1/√(4- x^2) ]
h(x)=√(4-x^2)
h'(x)
=(1/2)(4-x^2)^(-1/2) .(-2x)
=-x/√(4- x^2)
y=xarcsin(x/2) +√(4-x^2)
y'=arcsin(x/2) + (1/2)[ 1/√(4- x^2) ] -x/√(4- x^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |