裂项相消法
1个回答
展开全部
1裂项法求和编辑这是分解与组合思想在数列求和中的具体应用.。(1)1/[n(n+1)]=(1/n)-
[1/(n+1)](2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)](3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}(4)1/(√a+√b)=[1/(a-b)](√a-√b)(5)
n·n!=(n+1)!-n!(6)1/[n(n+k)]=1/k[1/n-1/(n
基本裂项式
+k)]
分母三个数相乘的裂项公式
2示例编辑【例1】【分数裂项基本型】求数列an=1/n(n+1)
的前n项和.解:an=1/[n(n+1)]=(1/n)-
[1/(n+1)](裂项)则
Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)-
[1/(n+1)](裂项求和)=
1-1/(n+1)=
n/(n+1)【例2】【整数裂项基本型】求数列an=n(n+1)
的前n项和.解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)则
Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)=
[n(n+1)(n+2)]/3【例3】1/(1×4)+1/(4×7)+1/(7×10)+……+1/(91×94)使用裂项公式将每个分式展开成两个分数。原式=1/3
*[(1-1/4)+(1/4-1/7)+(1/7-1/10)+……+(1/91-1/94)]=1/3*(1-1/94)=31/943小结编辑此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意:
余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)附:数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)1、分组法求数列的和:如an=2n+3n2、错位相减法求和:如an=n·2^n3、裂项法求和:如an=1/n(n+1)4、倒序相加法求和:如an=
n5、求数列的最大、最小项的方法:①
an+1-an=……
如an=
-2n2+29n-3②
(an>0)
如an=③
an=f(n)
研究函数f(n)的增减性
如an=
an^2+bn+c(a≠0)6、在等差数列
中,有关Sn
的最值问题——常用邻项变号法求解:(1)当
a1>0,d<0时,满足{an}的项数m使得Sm取最大值.(2)当
a1<0,d>0时,满足{an}的项数m使得Sm取最小值.7、对于1/n+1/(n+1)+1/(n+2)……+1/(n+n)的算式同样适用。[1]
[1/(n+1)](2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)](3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}(4)1/(√a+√b)=[1/(a-b)](√a-√b)(5)
n·n!=(n+1)!-n!(6)1/[n(n+k)]=1/k[1/n-1/(n
基本裂项式
+k)]
分母三个数相乘的裂项公式
2示例编辑【例1】【分数裂项基本型】求数列an=1/n(n+1)
的前n项和.解:an=1/[n(n+1)]=(1/n)-
[1/(n+1)](裂项)则
Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)-
[1/(n+1)](裂项求和)=
1-1/(n+1)=
n/(n+1)【例2】【整数裂项基本型】求数列an=n(n+1)
的前n项和.解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)则
Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)=
[n(n+1)(n+2)]/3【例3】1/(1×4)+1/(4×7)+1/(7×10)+……+1/(91×94)使用裂项公式将每个分式展开成两个分数。原式=1/3
*[(1-1/4)+(1/4-1/7)+(1/7-1/10)+……+(1/91-1/94)]=1/3*(1-1/94)=31/943小结编辑此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意:
余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)附:数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)1、分组法求数列的和:如an=2n+3n2、错位相减法求和:如an=n·2^n3、裂项法求和:如an=1/n(n+1)4、倒序相加法求和:如an=
n5、求数列的最大、最小项的方法:①
an+1-an=……
如an=
-2n2+29n-3②
(an>0)
如an=③
an=f(n)
研究函数f(n)的增减性
如an=
an^2+bn+c(a≠0)6、在等差数列
中,有关Sn
的最值问题——常用邻项变号法求解:(1)当
a1>0,d<0时,满足{an}的项数m使得Sm取最大值.(2)当
a1<0,d>0时,满足{an}的项数m使得Sm取最小值.7、对于1/n+1/(n+1)+1/(n+2)……+1/(n+n)的算式同样适用。[1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询