怎么用比较判别法判断级数的收敛性
展开全部
前提:两个正项级数∑n=1→
∞an,∑n=1→
∞bn满足0<=an<=bn
结论:若∑n=1→
∞bn收敛,则∑n=1→
∞an收敛
若∑n=1→
∞an发散,则∑n=1→
∞bn发散。
建议:用比较判别法判断级数的收敛性时,通常构造另一级数。根据另一级数判断所求级数的敛散性。
∞an,∑n=1→
∞bn满足0<=an<=bn
结论:若∑n=1→
∞bn收敛,则∑n=1→
∞an收敛
若∑n=1→
∞an发散,则∑n=1→
∞bn发散。
建议:用比较判别法判断级数的收敛性时,通常构造另一级数。根据另一级数判断所求级数的敛散性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询