7、 关于x的方程x2-2(m+1)x+m2-2m-3=0 两个不相等实数根中有一个根为0。

7、关于x的方程x2-2(m+1)x+m2-2m-3=0两个不相等实数根中有一个根为0。是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0的两个实数... 7、 关于x的方程x2-2(m+1)x+m2-2m-3=0 两个不相等实数根中有一个根为0。 是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0 的两个实数根x1,x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由。 展开
 我来答
革余宣晗日
2019-05-03 · TA获得超过3627个赞
知道大有可为答主
回答量:3075
采纳率:28%
帮助的人:196万
展开全部
关于X的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等实数根中,有一个根为0.
∴把x=0代入方程解得:m1=-1,m2=3.
∴另一方程可能为:x^2-(k+1)x-k-8=0或x^2-(k-3)x-k+4=0,
设存在实数k,使关于x的方程x^2-(k-m)x-k-m^2+5m-2=0的两个实数根之差的绝对值为1,两根分别为x1,x2.
由韦达定理得:x1+x2=k+1或x1+x2=k-3;x1x2=-(k+8)或x1x2=-(k-4)
∴|x1-x2|=√[(x1+x2)^2-4x1x2]=(k+1)^2+4(k+8)]=1解得方程无实数根.
|x1-x2|=√[(x1+x2)^2-4x1x2]=∴|x1-x2|=√[[(k-3)^2+4(k-4)]=1,
解得:k1=4,k2=-2,
经检验:k2=-2不符合题意,k=4符合题意.
∴存在实数k=4使关于x的方程x^2-(k-3)x+4=0的两个实数根之差的绝对值为1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式