1个回答
展开全部
∫∫∫Ω (x²+y²)dxdydz
=∫(-R,R) dz∫(0,2π) dθ∫(0,∨(R²-z²)) r³dr
=π/2 ∫(-R,R) (R²-z²)²dz
=π/2 ∫(-R,R) (R^4-2R²z²+z^4)dz
=π/2 (R^4 ·z-2/3 R²z³+1/5 z^5) |(-R,R)
=π (R^5-2/3 R^5+1/5 R^5)
=8/15 πR^5
选择C
=∫(-R,R) dz∫(0,2π) dθ∫(0,∨(R²-z²)) r³dr
=π/2 ∫(-R,R) (R²-z²)²dz
=π/2 ∫(-R,R) (R^4-2R²z²+z^4)dz
=π/2 (R^4 ·z-2/3 R²z³+1/5 z^5) |(-R,R)
=π (R^5-2/3 R^5+1/5 R^5)
=8/15 πR^5
选择C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询