含30°的直角三角形的性质是什么?
1个回答
展开全部
含30°的直角三角形的性质如下:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)。
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°。
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
直角三角形判定方法
1、有一个角为90°的三角形是直角三角形。若a2+b2=c2,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
2、两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么这个三角形为直角三角形。若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。参考直角三角形斜边中线定理。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询