二次函数解法是什么?
1、f'(x)=6ax^2+2bx-6
在x=
1处取得极值,则f'(1)=6a+2b-6=0;
在x=-1处取得极值,则f'(-1)=6a-2b-6=0;
解得a=1;b=0;
∴f(x)=2x3-6x;
f'(x)=6x^2-6
则f''(x)=12x
∵f''(1)=12>0,呈凹性,∴f(1)是极小值;
∵f''(-1)=-12<0,呈突性,∴f(-1)是极大值
2、试求函数f(x)在x=-2处的切线方程;
f'(-2)=6×2^2-6=18;
在x=-2处的切线斜率为18;
而f(-2)=2x3-6x=-4;
∴切线方程y=18x+32;
3、试求函数f(x)在区间[-3,2]
上的最值
f(x)=2x3-6x;
f'(x)=6x^2-6;
使f'(x)=6x^2-6=0,得x=±1
已经知道了f(1)=-4是极小值,f(-1)=4是极大值
具体可分为下面几种情况:
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;
当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行移动h个单位得到;
当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图像;
当h>0,k>0时,将抛物线y=ax²向左平行移动h个单位,再向下移动k个单位,就可以得到y=a(x+h)²-k的图像;
当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图像;