数的整除特征经典例题

 我来答
qsmm
2021-03-25 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:13.5亿
展开全部
例1:42□28□是99的倍数,这个数除以99所得的商是__。
讲析:能被99整除的数,一定能被9和11整除。
设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。
又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。经验证,(b-a-8)是11的倍数不合。
所以a-b=3。
又a+b=2或11,可求得a=7,b=4。
从而很容易求出商为427284÷99=4316。
例2:
某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。
讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。
而1993000÷2520=790余2200。
于是再加上(2520-2200)=320时,就可以了。所以最后三位数字依次是3、2、0。
例3:
七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。
讲析:设千位上和个位上的数字分别是a和b。则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。
要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。
则有 b-a=8,或者a-b=3。
①当 b-a=8时,b可取9、8;
②当 a-b=3时,b可取6、5、4、3、2、1、0。
所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。
例4:下面这个四十一位数
55……5□99……9
(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。
讲析:注意到111111÷7=15873,所以555555与999999也能被7整除。则18个5或18个9组成的数,也能被7整除。
要使原四十一位数能被7整除,只需55□99这个五位数是7的倍数。
容易得出,中间方格内的数字是6。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式