求 行列式 这个题目详细解析
展开全部
为了方便叙述,可以把这个行列式转置一下,即第k列的元素排至第k列(k=1,2,3,4,5),这样转置一下,行列式的值是不会变的。
显然可看出,第二行可提出2,第三行可提出3,第四行可提出4,第五行可提出5,这样变换成一个行列式,第一,二,三,四,五行元素分别为
〔0,1,1,1,1〕,
〔1,0,1,1,1〕,
〔1,1,0,1,1〕,
〔1,1,1,0,1〕,
〔1,1,1,1,0〕,
把这个行列式所有行的元素加到第一行对应的元素,则第一行变为
〔4,4,4,4,4〕,
把4提到行列式外面,得
〔1,1,1,1,1〕
那么行列式各行元素依次变成如下
1,1,1,1,1
1,0,1,1,1
1,1,0,1,1
1,1,1,0,1
1,1,1,1,0
把这个行列式第二,三,四,五行分别减第一行,则又变为如下
1,1,1,1,1
0,-1,0,0,0
0,0,-1,0,0
0,0,0,-1,0
0,0,0,0,-1,
再用第二,三,四,五列分别减第一列,行列式各行元素变为
1,0,0,0,0
0,-1,0,0,0
0,0,-1,0,0
0,0,0,-1,0
0,0,0,0,-1
那么这个行列式的值等于对角线元素之积
1×(-1)×(-1)×(-1)×(-1)=1,
不要忘了提在行列式外面的元素,2,3,4,5(第一轮提出);4(第二轮提出),这些元素之积2×3×4×5×4=480,再480×1=480,这就是所要求的行列式的值。
显然可看出,第二行可提出2,第三行可提出3,第四行可提出4,第五行可提出5,这样变换成一个行列式,第一,二,三,四,五行元素分别为
〔0,1,1,1,1〕,
〔1,0,1,1,1〕,
〔1,1,0,1,1〕,
〔1,1,1,0,1〕,
〔1,1,1,1,0〕,
把这个行列式所有行的元素加到第一行对应的元素,则第一行变为
〔4,4,4,4,4〕,
把4提到行列式外面,得
〔1,1,1,1,1〕
那么行列式各行元素依次变成如下
1,1,1,1,1
1,0,1,1,1
1,1,0,1,1
1,1,1,0,1
1,1,1,1,0
把这个行列式第二,三,四,五行分别减第一行,则又变为如下
1,1,1,1,1
0,-1,0,0,0
0,0,-1,0,0
0,0,0,-1,0
0,0,0,0,-1,
再用第二,三,四,五列分别减第一列,行列式各行元素变为
1,0,0,0,0
0,-1,0,0,0
0,0,-1,0,0
0,0,0,-1,0
0,0,0,0,-1
那么这个行列式的值等于对角线元素之积
1×(-1)×(-1)×(-1)×(-1)=1,
不要忘了提在行列式外面的元素,2,3,4,5(第一轮提出);4(第二轮提出),这些元素之积2×3×4×5×4=480,再480×1=480,这就是所要求的行列式的值。
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询