5个回答
展开全部
∫dx/[(x²+1)(x²+x)]=∫dx/[x(x+1)(x²+1)]=∫[(A/x)+B/(x+1)+(Cx+D)/(x²+1)]dx;
拆项:
1/[x(x+1)(x²+1)]=(A/x)+B/(x+1)+(Cx+D)/(x²+1)
通分:
=[A(x+1)(x²+1)+Bx(x²+1)+x(x+1)(Cx+D)]/[x(x+1)(x²+1)]
合并同类项:
=[(A+B+C)x³+(A+D+C)x²+(A+B+D)x+A]/[x(x+1)(x²+1)]
两边对应项的系数应相等,于是得:
A+B+C=0........①; A+D+C=0.........②; A+B+D=0..........③; A=1..........④
四式联立,不难求得:A=1,B=C=D=-1/2;
故原式=∫[(1/x)-1/2(x+1)-(x+1)/2(x²+1)]dx
=ln∣x∣-(1/2)ln∣x+1∣-(1/2)∫[x/(x²+1)]dx-(1/2)∫[1/(x²+1)]dx
=ln∣x∣-(1/2)ln∣x+1∣-(1/4)ln(x²+1)-(1/2)arctanx+C;
拆项:
1/[x(x+1)(x²+1)]=(A/x)+B/(x+1)+(Cx+D)/(x²+1)
通分:
=[A(x+1)(x²+1)+Bx(x²+1)+x(x+1)(Cx+D)]/[x(x+1)(x²+1)]
合并同类项:
=[(A+B+C)x³+(A+D+C)x²+(A+B+D)x+A]/[x(x+1)(x²+1)]
两边对应项的系数应相等,于是得:
A+B+C=0........①; A+D+C=0.........②; A+B+D=0..........③; A=1..........④
四式联立,不难求得:A=1,B=C=D=-1/2;
故原式=∫[(1/x)-1/2(x+1)-(x+1)/2(x²+1)]dx
=ln∣x∣-(1/2)ln∣x+1∣-(1/2)∫[x/(x²+1)]dx-(1/2)∫[1/(x²+1)]dx
=ln∣x∣-(1/2)ln∣x+1∣-(1/4)ln(x²+1)-(1/2)arctanx+C;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分享一种解法。设1/[(x²+x)(1+x²)=a/x+b/(1+x)+(cx+d)/(1+x²)。两边同乘以x、令x=0,得a=1;两边同乘以x+1、令x=-1,得b=-1/2;两边同乘以1+x²、令x=i,得ci+d=1/[i(1+i)]=(-1/2)(1+i),c=d=-1/2。
易得,原式=ln丨x丨-(1/2)ln丨x+1丨-(1/4)ln(1+x²)-(1/2)arctanx+C。
易得,原式=ln丨x丨-(1/2)ln丨x+1丨-(1/4)ln(1+x²)-(1/2)arctanx+C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询