(arctanx)的平方可以积分吗?
arctanx的积分是xarctanx-1/2ln(1+x²)+C。
解:
可以用分部积分法:
∫arctanxdx
=xarctanx-∫xdarctanx
=xarctanx-∫x/(1+x²)dx
=xarctanx-1/2ln(1+x²)+C。
所以arctanx的积分是xarctanx-1/2ln(1+x²)+C。
相关内容解释:
1、导数的四则运算(u与v都是关于x的函数)
(1)(u±v)'=u'±v'。
(2)(u*v)'=u'*v+u*v'。
(3)(u/v)'=(u'*v-u*v')/v²。
2、导数的基本公式
C'=0(C为常数)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx。
3、求导例题
(1)y=4x^4+sinxcosx,则(y)'=(4x^4+sinxcosx)'
=(4x^4)'+(sinxcosx)'
=16x^3+(sinx)'*cosx+sinx*(cosx)'
=16x^3+cosx²x-sinx²x
=16x^3+cos2x。
(2)y=x/(x+1),则(y)'=(x/(x+1))'
=(x'*(x+1)-x*(x+1)')/(x+1)²
=((x+1)-x)/(x+1)²
=1/(x+1)²。