ABC三个事件,ABC不都发生,请问为什么?

 我来答
教育小百科达人
2022-08-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

ABC三个事件不都发生,和ABC同时都发生是对立事件

ABC三个事件同时发生为 P(ABC),所以ABC三事件不都同时发生为 1-P(ABC)。

扩展资料:

设随机实验E的样本空间为Ω。若按照某种方法,对E的每一事件A赋于一个实数P(A),且满足以下公理:

(1)非负性:P(A)≥0;

(2)规范性:P(Ω)=1;

(3)可列(完全)可加性:对于两两互不相容的可列无穷多个事件A1,A2,……,An,……,有

 ,则称实数P(A)为事件A的概率。

传统概率又叫拉普拉斯概率,因为其定义是由法国数学家拉普拉斯提出的。如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验。在拉普拉斯试验中,事件A在事件空间S中的概率P(A)为:

例如,在一次同时掷一个硬币和一个骰子的随机试验中,假设事件A为获得国徽面且点数大于4,那么事件A的概率应该有如下计算方法:

S={(国徽,1点),(数字,1点),(国徽,2点),(数字,2点),(国徽,3点),(数字,3点),(国徽,4点),(数字,4点),(国徽,5点),(数字,5点),(国徽,6点),(数字,6点)},A={(国徽,5点),(国徽,6点)},按照拉普拉斯定义,A的概率为2/12=1/6,注意到在拉普拉斯试验中存在着若干的疑问,在现实中是否存在着这样一个试验。

其单位事件的概率具有精确的相同的概率值,因为人们不知道,硬币以及骰子是否"完美",即骰子制造的是否均匀,其重心是否位于正中心,以及轮盘是否倾向于某一个数字等等。尽管如此,传统概率在实践中被广泛应用于确定事件的概率值,其理论根据是:如果没有足够的论据来证明一个事件的概率大于另一个事件的概率,那么可以认为这两个事件的概率值相等。 

参考资料:百度百科-概率论

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式