行列式和矩阵的区别

 我来答
世纪网络17
2022-06-14 · TA获得超过5947个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部

矩阵就是线性空间中的元素。行列式就是矩阵的一个性质。现代数学中的行列式的概念已经被边缘化了,行列式可以说在实际应用中只是一个矩阵的算出来的,很有些用处的值。

行列式和矩阵的区别

矩阵相当于向量,行列式相当于向量的模。

一般教学上都先介绍行列式,再进行对矩阵的介绍,我觉得这样是不好的。应该先了解矩阵。

一开始,在实际应用的时候,会出现很多很多的未知数,为了通过公式解出这些未知数,就进行联立方程组进行求解。比如要知道x1,x2的值,就联立方程{a*x1+b*x2=i

c*x1+d*x2=j},

这样子来求解。可是啊,现实生活中,特别遇到一些复杂的工艺的时候,就会出现超级多的未知数,所以就会有超级多的方程需要联立求解,像上面的那个2阶方程还好,遇到20多阶的方程,这打死都不想算下去,太心累。

可是不算也不行啊,那怎么办呢?仔细观察,x1,x2的值其实是由a/b/c/d/i/j等这些数决定的,也就是说,我们要找求的未知数,取决于它们的常数项。那咱就对这些常数项进行研究呗。首先把这些常数项都列出来,这就形成了矩阵。现在,我们就是要对这个所谓的矩阵进行研究,找找它的特点。

对数据找特点嘛,就对这些数字随便加减乘除咯,摸索着摸索着,突然有人发现,如果对矩阵用一种特殊的算法,来作为其中之一的特征,好像比较有用。于是,这个算法就是对矩阵进行行列式计算。相当于行列式就是这个矩阵的一个特征值或者说属性值。就像向量中的向量的模一样。运用这些特征,大伙发现,这个行列式还挺有用,可以验证这个方程组有没有解。

这就是行列式和矩阵的区别。

行列式的性质

1、行列式A中某行(或列)用同一数k乘,其结果等于kA。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式